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PREFACE

The Directors of the Copenhagen Telephone Company wish to publish
the present work in memory of the late scientific collaborator of the Com-
pany, Mr. 4. K. Erlang, M. A., as “Le comité consultatif international
des communications téléphoniques & grande distance” (C. C. I. F.) at
its plenary meeting at Montreux in October, 1946, has decided that the -
name of Erlang shall be connected with the International Unit of Tele-
phone Traffic. The publishing is further occasioned by the fact that Mr.
Erlang would have attained the age of 70 on the lst January, 1948.

The publication of this work is intended to meet a desire, expressed
from various quarters, of a complete edition of A. K. Erlang’s principal
works which have been available hitherto in the form of articles in Danish
and foreign journals only. The present collection of Erlang’s works has
been edited by 3 members of the staff of the Telephone Company, viz.
Mr. H. Brockmeyer and Mr. H. L. Halstrom, telephone engineers, MM.
Sc., and Mr. Arne Jensen, actuary. Furthermore, Mr. Brockmeyer and
Mr. Halstrom have written a biography of Erlang and a commented
survey of his works, and Mr. Arne Jensen has written a paper, in which
Erlang’s works on the theory of probabilities are recapitulated and eluci-
dated on the basis of the theory of stochastic processes. Mr. Poul Reppien,
sworn translator, has performed the translation into English.

The Directors of the Company wish to extend their best thanks to
the “Academy of Technical Sciences” for its kindness in including this
work among its ‘“Transactions’.

It is their hope that this book may serve to make A. K. Erlang’s im-
portant scientific achievements — especially those pertaining to the
theory of telephone traffic — known and appreciated to an even greater
extent than before.

The Copenhagen Telephone Company, Ltd.
G. Irming.



CAenEr KRARUP ERLANG
: 1878 - 1929 o

This portrait of 4. K. Erlang, which originally appeared in’

the journal des Télécommunications, December 1947, is here

reproduced by kind permission of Le Bureau de I’Union
Internationale des Télécommunications.



THE LIFE OF A. K. ERLANG

By E. BROCKMEYER and H. L. HALSTR@M?).

“Bene qui latuit, bene vixit’’.
Qvid: Tristia, 3, 4, 25.

Agner Krorup Erlong was born on Tuesday, the 1st January, 1878, at
Lgnborg, a neighbouring village to the small town of Tarm situated south
of the Skern rivulet in Jutland.

His father, Hans Nielsen Erlang, was the worthy parish clerk of the
village, his official title being that of ‘‘schoolmaster and precentor”. H. N.
Erlang was born in South Jutland; nothing much is known about his
family, but the name of Erlang is believed to be a corruption — for which
German. clergymen probably are responsible — of the name of Erlandsen.
He had received a good education at a teachers’ training college at Jel-
ling, under the influence of H.J. M. Svendsen, a prominent member of
the Danish folk high school, who was head of the college at the time. This
college was preferred by a great number of Danish-minded students from
Slesvig who did not want to receive their training at the strongly German-
influenced college at Tonder.

A. K. Erlang’s mother’s family, on the other hand, is easier to trace.
His mother was Magdalene Krarup, of the well-known ecclesiastical
family. One of his maternal ancestors was the prominent mathematician
Thomas Fincke, a contemporary of the great astronomer, T'ycho Brahe;
Fincke’s descendants through several hundred years were holders of chairs
in the University of Copenhagen. The Krarup family was, furthermore,
related to the famous poet and religious leader, N. F. 8. Grundivig, the

latter being a first cousin to Magdalene Krarup’s grandmother. It was a
tradition in the Krarup family that all sons should become clergymen
and all daughters, clergymen’s wives; and so it was a liftle unusual when
young Magdalene chose to marry a plain village schoolmaster. But as the
family got to know H. N. Erlang, they soon learnt to like and respect
him very much.

1) The authors are greatly indebted to the late Mr. F. K. Erlang and to Miss I. Erlang
for their kindness in supplying valuable biographical information.



10 E. Brockmeyer and H. L. Halstrem:

Agner grew up at home together with his brother, Frederik, by two
years his senior, and his two younger sisters, Marie and Ingeborg, in not
too easy circumstances. The schoolmaster’s salary was very small, but
he was a clever and intelligent man with an unusual talent for economiz-
ing, and his wife did not mind working hard. Therefore the family lived
happily together in spite of their small income, and the children had a
happy childhood and a proper upbringing. One of the father’s principles
was that the children should have all the food they needed, but the food
must be plain, and preferably milk food; he had also decided that all
milk should be carefully and thoroughly boiled so as to kill any disease-
carrying germs. Although inconsistent with modern methods of preserving
vitamins, this procedure was unquestionably a very sensible precaution
at the time, considering the then wide-spread cattle tuberculosis.

Agner soon proved to be quick of apprehension, and he had a good
memory, too; he was a quiet and peaceable boy who preferred reading
to playing with the other boys. In the evenings, he and his elder brother
would often share the reading of a book between them, the usual pro-
cedure being that brother Frederik would read it in the approved manner,
while Agner, sitting opposite to him at the table, would read the book
upside down. They got along well, as he soon learnt to read just as
well in this new manner as Frederik did in his. Agner’s favourite subject
at that particular time was astronomy, and it was a great help that grand-
father Krarup, the old viecar, had had the same hobby and had left several
volumes on astronomy when he died. But Agner was not only interested
in scientifical studies; the art of verse-making had also aroused his in-
terest, and he wrote a good many poems on astronomical subjects. His
poems, however, did not distinguish themselves so much by poetic flight
as by strict logic. He wrote, for instance, a poem about the discovery of
the planet Neptune, the first few lines of which, reproduced in English,
read as follows:

“Leverrier wrote to Galle a letter,
Saying, ‘Gaze at the sky you had better,
For soon up there, may be,

A planet you will see!’”

Agner spent his early school-days at his father’s schoolhouse together
with his brother and sisters, and when he had finished his elementary edu-
cation at the village school, he stayed at home to be coached for the ““Prze-
liminzereksamen™ (a sort of lower school certificate examination), partly by
his father and partly, or rather chiefly, by P..J. Pedersen, an assistant teacher
who had just been appointed to help the schoolmaster. P. J. Pedersen had
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Agner Erlang at the age of 8 (right) and his brother Frederik.



12 ' E. Brockmeyer and H. L. Halstrem:

graduated from a teachers’ training college and was an excellent teacher;
his teaching came to be of consequence to Agner Erlang’s development
and career. Several years later he became Mayor of Copenhagen. — In
the summer of 1892, when it was fairly sdfe to presume that a sufficient
amount of knowledge had been imparted to them, Agner and his brother

A. K. Erlang at the age of 15.

Frederik were sent to Copenhagen to enter as privately coached examinees
for the “Preelimineereksamen’ which was held at the University. Agner
was then only 14 years old, which was below the prescribed age limit; it
was therefore necessary to apply for a special entrance permission. The
permission was granted, however, and Agner passed his examination with,
distinction. ’

After that, Agner returned to Lenborg and became assistant teacher at
his father’s school for a period of two years; at the same time he was taught
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French by a teacher at the “Tarm Realskole” and Latin by the vicar of
a neighbouring parish. When Agner reached the age of 16 his father thought
that he ought to continue his studies and, if possible, pass the “Studenter-
eksamen” (the University entrance examination). But money was scarce,
and so Agner’s father had to find out how much this might be expected
to cost him. He wrote, therefore, to M. Funch, the county clerk of Hille-
red?), whose wife was born Krarup, for information and advice, as their
son had recently passed the “Studentereksamen”. The county clerk
wrote back that he had always felt indebted to the Krarup family, and
would Erlang please permit him to take young Agner into his home —
by way of repaying a small part of this debt — while he prepared for
his examination at the Frederiksborg Grammar-School? This generous offer
helped to overcome the financial difficulties in connexion with Agner Erlang’s
education, and he spent a happy time with the county clerk at Hillerod
until he, in 1896, passed his “Studentereksamen’ with distinction.

The Frederiksborg Grammar-School had the privilege of two scholarships
tenable at ‘“Regensen’’?), and Erlang attained one of these. He now lived
at “Regensen’ while he studied mathematics and exact natural sciences
at the University of Copenhagen. His mathematical education was greatly
influenced by Prof. H. Q. Zeuthen’s and Prof. C. Juel’s lectures, and all
his life he maintained and cultivated his interest in geometrical problems.
. He finished his university studies in January, 1901, by taking the degree
of candidatus magisterii (M.A.) with mathematics as principal subject
and, astronomy, physics,.and chemistry as secondary subjects.

For some years Erlang worked as a teacher at various schools, such as:
“Gammelholms Latin- & Realskole”, ‘“Femmers Kvindeseminarium’ and
“Lang & Hjorts Kursus” in Copenbagen, and “Vamdrup Realskole” in
South Jutland. He proved to be in possession of excellent pedagogical
qualities, even though his natural predilection was for scientific research
rather than for teaching.

During this period, Erlang used to spend his leisure hours with a circle
of young university people at “‘Studenterhjemmet”’, a Christian students’
association in Copenhagen. Sympathizing with the Christian students’
movement, he was for a time a member of the management of ‘“Studenter-
hjemmet”’. He was a peaceable, not particularly sociable man who pre-
ferred to walk about as an interested spectator ; this had inspired his friends
to nickname him “The Private Person”. Among the acquaintances he
made at “‘Studenterhjemmet’’ was H. C. Nybolle who later was appointed
professor of statistics in the University of Copenhagen. Erlang and Ny-

1) Market town, North Seeland, with ancient royal castle of Frederiksborg.
2) “Regensen” is an ancient college in Copenhagen providing free lodgings for deserv-
ing university students; it was founded in 1623 by King Christian IV.
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bglle became friends for life, and they helped each other with their scien-
tific work. Later, Nybglle’s sister married A. K. Erlang’s brother, F. K.
Erlang.

In conjunction with his work as a teacher, Erlang diligently continued
his studies of mathematies and natural sciences; thus, he managed to find
time for attempting the mathematical prize essay of the University for 1902-
1903, on Huygens’ solutions of infinitesimal problems, for which attempt
he was rewarded with an “accessit’’ in 1904. He had then already taken up -
the study of the theory of probabilities which later came to be the
subject of his principal works.

In those years — and later — FErlang spent several of his summer
vacations abroad, frequently accompanied by his brother, and a few times
accompanied by L. Christensen, his fellow collegian who had become head-
master of the Cathedral School of Aarhus. Thus, he went to Sweden, Eng-
land, Germany, and France several times. On these journeys he cultivated
his many-sided interests, visiting art galleries and libraries, and he is
said to have been an uncommonly interesting and pleasant travelling
companion.

Erlang was a member of “Matematisk Forening” (Mathematicians’ As-
sociation) and assisted regularly at its meetings. There, he became acquaint-
ed with the notable mathematician J. L. W. V. Jensen, Ph. D., then chief
engineer and head of the technical department of the Copenhagen Tele-
phone Company; as a result of this acquaintanceship, Erlang was in-
troduced to the then managing director of the Company, Fr. Johannsen,
D. Se.

The merit of having introduced the theory of probabilities into tele-
phony is due to Dr. Johannsen as he had published, in 1907 and 1908,
two essays under the respective titles of “Waiting Times and Number of
Calls”’t) and “Busy’’?), the former dealing with the delay problem in con-
nexion with incoming calls in manual telephone exchange switchboards,
and the latter being an investigation as to how often subseribers with, one
or more lines each are reported “busy”’. In both papers, the problems
were coped with by means of the theory of probabilities; true, the method
was not mathematically exact, but the results obtained were sufficiently
correct to be serviceable for practical purposes.

Dr. Johannsen, who had a remarkable talent for selecting assistants of
the right sort, suggested to Erlang that he should take these problems
up for mathematical treatment. For some time Dr. Johannsen had been

1) Reprinted in “Telephone Management in Large Cities”, Post Office Electrlcal Engi-
neers Journal, London, Oct. 1910 and Jan. 1911.

2) Reprinted in “The Development of Telephomc Communication in Copenhagen 1881-
1931, Ingeniervidenskabelige Skrifter A, No. 32, Copenhagen, 1932, p. 150.
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16 E. Brockmeyer and H. L. Halstrem:

nursing the idea of establishing a physico-technical laboratory for scientif-
ic research work, as the development and importance of the Copenhagen
Telephone Company seemed to justify such a step, and so, in 1908, the
Company engaged Erlang as scientific collaborator and head of its labo-
ratory. In this position, which gave him an opportunity to develop and
utilize his great gifts and considerable knowledge, he worked for the rest
of his life.

With enthusiasm and diligence, Erlang immediately set to work at
applying the theory of probabilities to problems of telephone traffic, the
domain that was to make his name widely known. As early as in 1909 he
published his first work on this subject, ‘“The Theory of Probabilities and
Telephone Conversations®, in which he proved that telephone calls dis-
tributed at random follow the Poisson law of distribution, and gave the
exact solution of the delay problem stated in Dr. Johannsen’s essay of
1907, in the special case of only one operator being available to handle
the calls.

Erlang also cooperated with, Dr. J. L. W. V. Jensen’s successor-to-be as
chief engineer to the Company, P. V. Christensen, who in 1913 published
his paper on ‘“The Number of Selectors in, Automatic Telephone Exchan-
ges”) in which he, as the first, treated these problems by means of the
theory of probabilities. Erlang contributed to this paper by preparing the
tables stating the probability of loss.

In 1917 Erlang published his most important work, “Solution of some
Problems in the Theory of Probabilities of Significance in Automatic Te-
lephone Exchanges”, containing his formulae for loss and waiting time
which he had developed on the basis of the principle of statistical equilib-
rium; these now well-known, formulae are of fundamental 1mportance to
the theory of telephone traffic.

In the course of the years, Erlang published several other valuable
works on the theory of telephone traffic and some smaller works with
reference to other mathematical domains, especially the calculation of
tables of logarithms and other numerical tables. All these shall not be
enumerated here, however, as a survey of Erlang’s works is given on
pp. 101-130.

Nearly all his works have first been published in Danish in the form
of articles in various journals, but the most important of them have later
been translated into one or more foreign languages such as English, French,
and German, and printed in foreign journals. Erlang had a decided pro-
pensity to concise speech, and he wrote his essays in a very brief style,-
t00; in fact, his conciseness was so ingrained that he even published many

1) Published, in “Elektroteknikeren”, 1913, p. 207, also in Elektrotechnische Zeitschrift,
1913, p. 1314 and in Post Office Electrical Engineers Journal, 1914, p. 271.
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of his results without giving the proofs. The concise style and the omission
of the proofs serve, to some extent, to complicate the study of his original
works for readers who are not specialists in the relevant domains.

However, Erlang’s works on the theory of telephone. traffic soon won
recognition and understanding not only in the Scandinavian countries,
but also in other countries. Thus, a few years after its appearance his
formula for the probability of loss was accepted by the British Post Office
as basis for calculations respecting circuit facilities. It may be mentioned
as an example of the interest taken in his works that two researchers of
the subject taught themselves Danish in order to be able to read Erlang’s
papers in the original language, namely Dr. 4. B. Vaulot, a Frenchman who
has translated some of Erlang’s works into French, and Dr. Thornton C.
Fry of the Bell Telephone Laboratories, U. S. A.

As the leader of the laboratory of the Telephone Company, Erlang had
opportunity to grapple with numerous and varied physico-technical prob-
lems, one of his first being the measuring of stray currents. Prof. Absalon
Larsen and 8. A. Faber had previously laid the foundation by investigating
the distribution of stray currents and their damaging influence upon the
lead sheaths of telephone cables, but it fell to Erlang’s lot to systematize
the practical procedure. At first Erlang had no laboratory staff to assist
him; he had to carry out all measurements of stray currents in person,
and so he could be seen frequently in the streets of Copenhagen followed
by a workman carrying a ladder, which was used for the purpose of climb-
ing down into the manholes.

Erlang published some works dealing with various problems pertaining
to the physico-technical side of telephony that were of considerable im-
portance at the time of their appearance. For the purpose of measuring
alternating currents, for instance, he constructed a measuring apparatus
— the so-called “Erlang’s Complex Compensator” — which represented a
considerable improvement, compared with similar types of measuring in-
struments of earlier date. He did not publish many works of this kind,
however, as most of his laboratory tasks consisted in the solution of con-
crefe problems in connexion with loaded eables, transmission schemes,
etcetera. A great part of these practical results of his would undoubtedly
have been of interest to many, but Erlang used to think that he could not
afford the time it would be necessary to spend on preparing such works
for publication. '

The engineers of the Telephone Company could always rely on Erlang
when they needed his help in questions of physical or mathematical na-
ture; a frequent visitor to the public libraries, he had an amazing knack
of procuring literature to. cover any topical matter. Erlang had his own,
almost Socratic, manner of answering questions put to him: as a rule,

2
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he would hesitate to give a solution of the question asked, directly, prefer-
ring instead to enter into a sometimes lengthy discussion that would eluci-
date the subject from any conceivable point of view; in this manner he
forced the inquirer into thinking the matter over on his own, thereby per-
haps finding his way to solve the problem independently. After such a
discussion with Erlang one always felt enriched far beyond the scope of
its original subject..

Erlang remained single all his life. There was a time, however, when
he was very much interested in a pretty young girl; but she married one
of Erlang’s fellow collegians, and it took him a long time to live down
his disappointment. He was fond of children, and they liked him; he
enjoyed to chat with children, and sometimes even taught them to play
chess. ’ _

Erlang devoted all his energy to his scientific studies and his work at
the laboratory of the Telephone Company. He would often work far into
the night in his study at home, and when he eventually retired to bed,
he armed himself with four or five books to choose between; then, he
would open one of the books and begin to read, usually falling asleep
and forgetting about his book and the electric light a few minutes later.
When his sister discovered that the light was burning to no purpose at
all, she sometimes tip-toed into his room and turned it off; it never failed,
on these occasions, that he immediately woke up and exclaimed in a voice
which he tried hard to make severe and offended, “I am working!” —
whereupon his sister hurriedly withdrew, of course.

Erlang collected a library — a remarkably large one, at that, for a
private person — chiefly comprising works about mathematics, physics,
and astronomy. His knowledge of these subjects was great and com-
prehensive, and yet he was interested in a good many other subjects as
well, such as philosophy, history, and poetry; he had a special liking for
Pascal and his production.

Besides being a member of “Matematisk Forening”, the meetings of
which he attended regularly, Erlang was an associate of the British In-
stitution of Electrical Engineers.

Erlang had a noteworthy and original personality. He was a sincere
Christian in a sympathetic way, at the same time being full of humour
and satirical wit; outwardly, his heavy red full beard and his manner of
dressing lent a cerfain artistic touch to his characteristic appearance.
Extremely modest and unobtrusive of demeanour, he preferred the peace-
ful atmosphere. of his study to social gatherings and festivities; he never
touched alcoholic liquors nor smoked tobacco. His mode of life has been.
expressed very appropriately in the words which Prof. Nybglle put as the
motto of his obituary!) of Erlang, his intimate friend: the well-known

1) Published in “Matematisk Tidsskrift” B, 1929, p. 32.
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quotation which we have prefixed to this biography, too. The recognition
and esteem that fell to Erlang’s lot, especially towards the end of his life,
quite naturally made him happy, though.

Erlang was a beneficent man; living frugally, he could afford to help
others, which he did to an even very great extent. His youngest sister,
Miss Ingeborg Erlang, with whom he shared apartments for many years
right up to his death, had founded a home for feeble-minded women with
her own money, and in the course of the years Erlang donated a consider-
able part of his income to this home. Needy people often turned up at
the laboratory to apply to Erlang for help, and he would invariably help
them with ready money in as inconspicuous a manner as possible.

For a period of nearly 20 years Erlang had served the Copenhagen
Telephone Company without a single day’s absence on account of illness.
In January, 1929, he felt ill, however, and it turned out that he was
suffering from an abdominal disease that would necessitate an operation.
Before he was put in hospital, he took leave of all his colleagues at the
Company, telling them that he was going to stay in hospital for a short
time only; but when the tidings of his death a few days later reached the
Telephone House, his friends realized that he must have known his time
was drawing near. His religious conviction and his philosophical mode
of thought had bestowed upon him the serenity with which he went to
meet his death. ‘

Agner Krarup Erlang died on Sunday, the 3rd February, 1929, only
51 years old. .

In the autumn of 1943, the editors of the Swedish journal “Tekniska
Meddelanden fran Kungl. Telegrafstyrelsen” invited — in connexion with
an essay') by Conny Palm, Sc. D. — interested parties to enter for a
prize competition to be held for the purpose of finding a suitable name
for the natural unit of telephone traffic. This unit had not hitherto had
any particular name, for which reason such a vague denomination as
“Traffic Unit”’ (and in other languages, correspondingly, ‘“Trafikenhed”,
“Verkehrseinheit”, etcetera) had been used, which might easily give oc-
casion to confusion with other units of telephone traffic being employed
in practice, for instance: Sm, “Speech minutes”; E. B. H. C. “Equated
Busy Hour Calls™. ‘

In Danish quarters this gave rise to the idea of identifying A. K. Er-
lang’s name with the natural unit of traffic. Accordingly, Mr. P. V. Chri-
stensen, Chief Engineer to the Copenhagen Telephone Company; Mr. N. E.
Holmblad, Chief Engineer to the Danish Post & Telegraph Office; Prof.

1) Conny Palm: Samtalsminut eller Trafikenhet, T. M. f. K. T., 1943, p. 133.

2%
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J. Oskar Nielsen, and Prof. J. Rybner, both of the Royal Danish College
of Engineering, sent ths followinig note to the editors of “Tekn. Medd.
fr. Kungl. Telegrafstyrelsen’: S

““In connexion with Dr. Conny Palm’s essay: “Speech Minute or Traffic
Unit”’ in “Tekniska Meddelanden”, 1943, nos. 7-9, and the editors’ in-
vitation to enter for a prize competition with the object of finding a new
name for the natural unit of telephone traffic, we wish to express our
sympathy with the idea of introducing a suitable name that is well ada,pted
to be generally approved for international application.

“We would like to connect the said unit of traffic with the name of the
prominent researcher of the theory of telephone traffic, Magister 4. K.
Erlang (1878-1929), whose pioneer works in this field are universally
known and appreciated. It is sufficient to mention the formula, published
by Erlang in 1917, for the probability of loss in the case of a simple group
of circuits, the so-called ‘“B-formula’, which must be regarded as the
first mathematically exact solution of a problem of barred access; in this
formula enters, besides the number of circuits (x), the intensity of traffic
(y) as expressed in terms of the said natural unit of traffic.

““We beg to suggest, therefore, that the name of “Krlang” be intro-
duced as the denomination of the natural unit of traffic. . '

“The suggested denomination is in analogy with well-known unit
denominations such as Ohm, Ampére, Gauss, Maxwell, Orsted, etcetera.

“It would give us great pleasure if the adjudication committee would
support our suggestion by accepting the name of “Erlang” as the denom-
ination of the unit of traffic, thereby contributing to the introduction of
this name into telephony.”

The result of the competition was that the committee accepted the
name of “Erlang” which, by the way, had also been suggested by 8 out
of the 26 Swedish competitors. The adjudication committee gave the
following three reasons for its decision:

1) “Erlang” brings the name of the founder of modern telephone traf-
fic research to memory.
2) “Erlang” seems phonetically attractive, which is of consequence to
a. possible international acceptance of the name.
3) “Erlang” is not formed by abbreviation of any term in any specific
language, which means the absence of any risk of metamorphosis by
translation into any other language.

_In consequence of this decision the name of “Erlang” has been used
in the Scandinavian countries to denominate the unit of traffic since the
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beginning of 1944; World War II made it impossible, however, to seek
international acceptance at that time.

When, after the termination of the war, the sclenmﬁc intercourse of
the countries was resumed, the Swedish Telephone Administration sug-
gested to “Le comité consultatif international des communications t81é-
phoniques & grande distance” (C. C. I. F.) that the name of “Erlang’” be
internationally accepted as denominating the traffic unit.

The proposal came on for trial at the plenary meeting of C. C. I. F.
on the 28th October, 1946, at Montreux; Mr. N. E. Holmblad, the leader
of the Danish delegation, made some remarks on this occassion, by way
of commenting the proposal, upon Erlang’s achievements within the
theory of telephone traffic; whereupon the proposal was carried unan-
imously by the assembly.

Thus, “Erlang” is henceforth the international unit of telephone traf-
fic, and in the proceed.mgs of the C.C.I. F. the following deﬁmtlon is
recorded:

“The Handling of the Traffic Passing Through a Circuit or Group of
Circuits.”

“For a group of circuits (or connecting devices), the average intensity
of traffic during a period 7' equals the total occupancy divided by 7.
“The unit of traffic intensity as defined above is called “erlang’.

“Explanatory note:

“The number of connecting devices or circuits that are occupied at
any particular point of time can be ascertained by means of automatic
devices designed for the purpose. Let the time ¢ be marked out as absci ssa,
and let the ascertained number of simultaneously cccupied circuits
be marked out as ordinate; a curve can then be obtained, similar to the
curve C shown in the ai'ﬁxed figure. The mathematical expression for
the average intensity of traffic I, is given by the formula,

alo+ '
S n-dt

to )
L, = s

where £, denotes the point of time when the period 7' begins.
“Notwithstanding the fact that the average intensity of traffic is thus
expressed by a quantity of no physical dimension, the Committee con-
siders it expedient to suffix the word “erlang” to the said quantity, in
order to characterize the same, just as the terms of “neper”” or “decibel’’
are employed to express values of attenuation. An average value of
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traffic intensity is usually involved in calculations of the number of
connecting devices, so that the step-like diagram D (shown in the figure)
is used instead of the curve C. Each of the rectangles in this diagram
has the same area as that bounded by the corresponding segment of the
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curve. The height of each rectangle is equal to the quantity, expressed in
“erlang”, that characterizes the average intensity of traffic during the
period represented by the base of the rectangle; if total occupancy of all
connecting devices never occurs during the period 7', the said quantity
in terms of “‘erlang” also expresses the amount of traffic to be handled.

“The name of “erlang” is accepted in recognition of the important
investigations of the applicability of the theory of probabilities to tele-
phonic problems that were carried out by the Danish scientist Erlang.”



AN ELUCIDATION OF ERLANG’S STATISTICAL WORKS
THROUGH THE THEORY OF STOCHASTIC PROCESSES

By ARNE JENSEN

Introduction.

A. K. Erlang developed some theories belonging under the science of
statistics which have been of special importance to the solution of problems
within the field of telephone technics, where their applicability soon received
due recognition. In fact, these theories broke new ground; but they are
not very well known outside the field of telephony, owing to the fact that
Erlang’s published works appear only in the form of solutions of a few
special problems where the principles, upon which his solutions are based,
do not stand out clearly. '

By emphasizing the method of procedure and the generalities in the
following, I have attempted to throw light on a number of particular
solutions which have hitherto been but little known on account of the
form of representation. Furthermore, in order to lay stress on the fact
that the problems treated by Erlang are in reality statistic problems with
a wider scope of applicability, I have tried to break away, to some ex-
tent, from the terminology of telephony.

Erlang utilized a very useful domain of the so-called stochastic processes,
the complete theory of which was not given, as it happens, until much
later. The application of the theory of these stochastic processes has, how-
ever, resulted in an expansion of Erlang’s work and thereby made it pos-
sible to expound the underlying principles more clearly.

A simple expansion of the basic principles of Erlang’s holding t1me
distributions will lead to a system of distributions that is of interest to the
general theory of distributions.

The notation now commonly used has been adopted in the following,
instead of Erlang’s own notation.

Erlang’s principal statistical works, translated into English, are reprint-
ed on pp. 131—215.

On pp. 101—108, Mr. K. Brockmeyer M. Sc., gives a brief survey of
the contents of Erlang’s various statistical articles.

I remember gratefully my talks with the late Professor H. Cl. Nybolle,
one of Erlang’s few near friends, with whom Erlang had many debates
about the problems treated in this book: These talks have been a great
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help to me, as Erlang left but few notes apart from his published articles.

Finally I want to thank Professor 4. Hj. Hald, Ph. D., G. Rasch, Ph. D.,
Lecturer in the University of Copenhagen, Miss Vibeke Borchsenius, M. Se.,
and Mr. K. Brockmeyer, M. Sc., for detailed discussions of the problems
dealt with in the following.

1. Laws of Distribution.

In his works, Erlang mentions several laws of distribution for the time
during which a connecting device, an operator, a position, or the like, is
occupied with a call, or is otherwise occupied. They can all be derived from
the following simple assumption:

The termination of a call in progress depends wpon the previous
occurrence of a certain number of events, the nature of these events being
specified in each case. The probability that a discrete event will occur
within a certain time interval is asymptotically proportional to the length
of the time interval, with a factor of proportionality X that is independ-
ent of time. (1.1)

Hence it follows that the probability for the number of events v oc-
curring within the time interval ¢ is Poisson’s law of distribution with the
mean Af. This distribution can be written

PYAl
po) = 00 o (1.2

where p(v) is the probability that » events will occur in the time interval ¢.
If the termination of the call coincides with the occurrence of the fth event,
the probability P(> ¢) that the call will not yet have come to an end at the
expiration of the time ¢ after the initiation of the call, will be equal to the
probability that at most f-— 1 events will have occurred in the time inter-
val ¢. If the above mentioned factor of proportionality here is f2, it follows
that

f—1
P(>1t) = > pW)

v=0
5 ()
=e_f’\t20——-vy ; (1.8)
this can be put in the form
. Py yf—l
Y '

which can be shown by partial integration.
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The probability p(f)dt that the duration of the call, or rathel the holding
time, will be at least ¢ and at most ¢ + di is, then,

f—1
p ()t =i/\L eI f A dt, 1 =0, (1.5)

(f— D)

which is the so-called Type III of Pearson’s system of distributions,
also known as the y*-distribution, with 2 f degrees of freedom.
The mean value M of the distribution is

o 1
M= RP(>t)dt:7, (1.6)
.(1)

that is to say, the distribution (1.5) has the same mean value for all values
of f. Fig. 1.1 shows a graphical representation of the distribution for differ-
ent values of f, and A = 1.
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Fig. 1.1.
The distribution (1.5) for different values of f

For f = 1 we get the distribution that is most frequently used in tele-
phone engineering :

p(t) dt = e~ M. (1.7)
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Using the Incomplete Gamma Function and its properties we have for
f—> o0 in (1.4) that

l 0o 1=
lim P(> 1) — A, (1.8)
j—>o l 1 i< i

A
which is the sum function of another law of distribution frequently used
in telephone engineering:

p(t) = (1.9)

A more general system of distributions, which, infer alia, comprises the
distributions employed by Erlang (1.5), can be derived on the basis of the
following consideration :

The termination of a call in progress depends upon the previous
occurrence, in a prescribed order, of a certain number of events f. The
probability that a discrete event will occur within a certasn time inter-
val is asymptotically proportional to the length of the time interval, with
a factor of proportionality that, for the vth event,is A,. The termination
of the call will coincide with the occurrence of the fth event after the
initiation of the call. It is temporarily assumed that A, & A, for v + p. (1.10)

Let ¢, be the time at which the call was originated, and let p(t, v) be the
probability that exactly » events have occurred before the time #; we have
then, using (1.7), that the probability that the first event has not yet
occurred at the time ¢ is

p(E, 0) = e~ hE—W =g (L11)

The probability that the first event, but only the first, will' have occur-
red before the time ¢ is, then,

14

pt, 1) = § plty, 0) Ay e~ 20— gy, (1.12)
to .
— A (t—to) — /\2 (t—ty)
e [
= A + , (1.12)
Ag— Ay AL — A

and the probability that exactly the uth of the f events, but no more, will
have occurred before the time ¢ is ‘
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? —X, 4 (t—t) p<f—1.
— . ntl =
p(t’ /“‘) - tS“p(tI: ® 1) )\,u. € dtl’ t =t
p1 e——/\v(t—tn)
e A S (1.13)

= pl
v H (Ai—)\V)
i=1

iy
Hence it follows that the probability that the holding time will exceed the
time t is

=1

P(>t,f)= 2 2t )

e“)\v(t"'tn)

y=1 A 'H A — A)
it

and that the probability that the holding time will come to an end at a

time between ¢ and ¢ + di is

(1.14)

f A t—t)
b de =y 20
I (A —)

i=1

ik

dt, t=1, 1 (1.15)

The law of distribution is the limiting value of this expression when some
of the constants A, are equal ; thus when all A, = A, we obtain (1.5). A slight
alteration of the assumption (1.10) will lead to a system of discontinuous
distributions. The discontinuous distribution corresponding to (1.15) is ob-
tained by letting ¢ be given instead. of f:

f gt
pht) =N Ay 2 e tZt?) (116)
y=1 II ()\i__)‘v)
T3y

The system of distributions indicated by (1.15) and (1.16) is rather com-
prehensive.
Tor A, = a -+ B - v we obtain, e. g., the following distributions:

1) This distribution was first published by C. Palm, (1946).
2) This distribution was first published by O. Lundberg, (1940).
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=142
p(t, f) dt = P e ﬁ@-'v)) =1 (o + fﬁ) dt (1.17)
atfr>0 v=1--1
3 % tO:

and the corresponding distribution

| f—1+% | |
o, f) = f 1 e (@) (t—t0) (1— e;pf¢~tn))f~1,’ | : ,(ng)
G+BV>O, V:132:“':
f—; l’ 2: tot

which, by a simple transformation of the time, contains the Pearson disiri-
butions and the so-called Pdlya distribution.

2. On Discontinvous Stochastic Processes.

The distribution functions developed by Erlang may be interpreted as
limiting functions of certain discontinuous stochastic processes, the prop-
erties of which shall be elucidated in the following through an examination
of a special case, the Poisson process.

We want to find the law of distribution of a number of events 5 occurring
during a time interval ¢ after a point of time 7', on the assumption that the
probability that any one event will occur within the time interval ¢ is pro-
portional to the length of ¢ with a certain factor of proportionality and
independent of the point of time 7'. The event may be, for instance, a pe-
destrian’s passing of a certain spot in a street, or the arrival of a telephone
call in a certain group of switches in a telephone exchange. Such a law of
distribution is called a stochastm or random, process.

It may be useful to add a brief explanation since the last mentloned ex-
ample will be used frequently in the following. In a telephone system, a
group of subscribers has access to a certain number of connecting devices
such as selectors in the exchange, and conductors in cables between ex-
changes, so that the calls originated by the said subscribers must pass
through the said connecting devices. Any such connecting device which
happens to be carrying a conversation is blocked for new calls for the dura-
tion of the conversation already going on. A calling subscriber is therefore
referred to other connecting devices; if no others are available, he either
loses his call, or he will have to wait for a free switch, depending on the
exchange system used. In the followmg the term “‘switch” not only de-
notes a pair of conductors in a cable, but also a selector or any other such
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connecting device. A switch carrying a call or conversation is said to be
“occupied” by a call or conversation.

The factor of proportionality mentioned above is called A; the probabil-
ity -that the occurrence of a. total of ¢ events may be observed during the
time ¢ is P(i, t); and (t,, t,) denotes the time interval from ¢, to ¢,.

2

Fig. 2.1.

It is assumed that no event (j = 0, sée Fig. 2.1) has yet occurred at the
time origin 7' = 0.

In order to determine P(i, t), we derive P(i, t + 4¢) on the basis of the
events occurring during the two intervals (0, ¢) and (¢, ¢t + 4¢). By a sub-
sequent limit passage we obtain differential equations from which P(s, ¢)
can be determined. As the events occurring in the two time intervals under
consideration are mutually independent, the probability that no event will
occur before the time ¢ +- 4t is the product of the probability for no events
in the interval (0, ?) and the probability for no events in the interval
(t, t + 4t). The probability for no events in the interval (0, ¢) is P(0, t);
the probability that an event will ocour in the interval (¢, ¢ - 4t) is asymp-
totically equal to A 4i. Hence it follows that the probability for no event
in the said interval is asymptotically equal to 1 — X 4¢, that is to say,

P(0, t -+ At) = P(0, t) (1 — A 4¢) (2.1)
—+o(4t)
where
lim ol _ 0
dt—»o At

Now, ¢ events can occur in the interval (0, ¢ - 4t) in various ways. All the
i events may have occurred within the time interval (0, £), and therefore
no events in the interval (¢, ¢ + 4t); or 4+ — 1 events may have occurred in
the former interval, and 1 in the latter; or s — 2 in the former, and 2 in the
latter; or - - -; or 0 in the former, and s in the latter interval. These differ-
ent possibilities are mutually exclusive. The probability P(i, t + 4¢) is
therefore the sum of the probabilities that ¢ will be distributed in the above
mentioned ways. The probability of any one of these is the product of the
probability of the given number of events in the interval (0, ) and the
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probability of the given number of events in the interval (¢, t ++ 4¢); there-
fore,
P@i,t -+ 4t) = P(i, 1) (1 — A 4¢)

4+ Pi—1;8) A4t (2.2)
~+ o(4t).
(2.1) and (2.2) can be written in the form
P(0, ¢+ At)— P(0, ) o(4t)
= — AP0, ¢ —_— 2.3
- 0.0+~ (2.3)
PG, t 4 4t) — PG | At
it + 40 — PG 1) _ + AP(i — 1, 1) — AP(3, §) + 9—(—), i>0, (2.4)
At At
but
P(i, t + 48) — P(i, ¢
g LEBEEA PO iz, (2.5)
At—>0 4t

so that (2.3) and (2.4) for 4t —- 0 lead. to
P} (0, 1) = — AP(0, 1) (2.6)
P;(3,8) = AP(E — 1,t) — AP(i,¢), >0 (2.7

As it is assumed that the number of events is zero at the time origin 7' = 0,
we have that the initial value (j, 7') = (0, 0) and, therefore,

1, 1=40

P(i, 0) ={ o i—o (2.8)

The differential equations (2.6) and (2.7) have one and only one solution
satisfying (2.8), viz.,
Aty

2!

PG, t) = e, (2.9)
Since this stochastic process for a fixed value of ¢ represents the Poisson
law of distribution, it is called Poisson’s Process. Its mean value Af is
monotonic increasing, and it is continuously dependent on the parameter
t. A stochastic process may be characterized, for instance, as a distribution
whose parameters are dependent on the same variable, here the

time ¢..
When the initial value is (4, 0) instead of (0, 0), (2.8) is altered into

N 1, +=194, .
P(z,O):{O 13>;' )

1\

j. (2.10)
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(2.6) and (2.7) have one and only one solution satisfying (2.10), viz.,

At)—I
P(ii i I j: 0) :(.—)‘.“_' e—At:
(@ —7)!
where the notation P(t, ¢ | 4, 0) expresses that the stochastic process is a
conditional probability, the condition being that the initial value must be
(7, 0).
When the initial value is (f, t,) instead of (§, 0), (2.10) is altered into

i, | (2.11)

i

(1, i=j,
10, i>9,

I

P(i, o] 4, t) = gE (2.12)

(2.6) and (2.7) have one and only one solution satisfying (2.12), viz.,

A=) ey P2

PGt 17, t0) =" o]
. 2 4.

(2.13)

This general expression of the Poisson process serves to illustrate an or-

dinary stochastic process; it indicates the probability for a state 4 at a time

T =1t (t = t,), assuming that the state j was prevailing at the time 7' = ¢,,.
The Poisson process (2.13) satisfies the inequality

0= P@,t]j,t) =1 g (2.14)
= 3 > Y0/ — o t; to:
and the equation
=7

where the process of summation includes all possible values of <.
The Poisson process is stochastically definite (it is said to belong to the
so-called Markoff chains), as it satisfies the conditional equation

P(i,t [ ], te) = D P, 1§, 8) Pt |4, t), by =1 =t,  (2.16)
~where the process of summation includes all possible values of . The rela-

tion (2.186) is called Chapman-Kolmogoroff's equation.
The Poisson process satisfies (2.16) because

ew)\(t—-t')

P, t] ], to) = >, e (2.17)

j'=j

(A — ) (A — o))
C G—i) G —
1 (At —1tg)) 7

— A t—t) . ,
t—nNt =i

which is (2.13).
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It follows from (2.16) that the probability depending on the two con-
ditions (5, ¢') and (4, ¢,) satisfies the following equation:

PG, t)9,t ]9, t) =P@E,t|§,1), t, <<t <t (2.18)

which is an expansion, of
' P, t ], t) = P(1, t). (2.19)

The relation (2.19) is the general condition for stochastic independence of
events. The relation (2.18) expresses that only the latest information about
the state, (j°, "), will influence the conditional probability relative to pre-
viously oceurred events, for instance (j*, ¢*) and. (4, £,).1)

We shall briefly mention some other concepts.

A stochastic process is said to be homogeneous with respect to time when
" the conditional probability is exclusively dependent on the length of the
time interval under consideration, and. not on the points of time at which
it begins or ends, such as when

A stochastic process is said to be homogeneous with respect to space when
the conditional probability is exclusively dependent on the changes in the
state of events from the initial time ¢, to the point of time ¢ under consider-
ation, and not on the initial state proper or the final state proper, such as
when

PG, t]g,t) =PE—73,t10,t,) - (2.21)

When (2.20) and (2.21) are satisfied, the process is called homogeneous.
As a stochastic process must satisfy

. . 1, 2=
prmandg .22
P(Z, tO I 77 tO) { 0, 'b' :i: 7-: (2 )
we have, on certain conditions?), that
> P(i,t ] ], t,) = 1. (2.23)

(=]

=

The conditions are satisfied in the case of the stochastic processes to be
treated in the following, if

ay + BVI é kl: v = ]-, 2: Tt (2'24)

or ay _I_ Igvj é kz v, vV = ]-: 27 R (2'25)

1) For further information, see A. Kolmogoroff, 1931 and 1933, R. v. Mises, 1931, B. Ho-
stinsky, 1931.
2) For further information, see N. Arley and V. Borchsenius, 1945, p. 286.
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where a,4t and B,,4¢ are asymptotic probabilities that a change from » to
v — 1, or from » to v + f, respectively, will take place during the time inter-
val (£, ¢ + 4¢t).

It will appear from (2.13), (2.11), and (2.2) that the Poisson process is
homogeneous and satisfies (2.24), as 0 = a, and XA = B, 7, hence it follows
that also (2.23) is satisfied.

3. The Poisson Distribution.

The process described in the preceding chapter is a pure “propagation
process” where the number of events (hereinafter called individuals) is a
never decreasing function of time, whereas, in all the processes considered
by Erlang, the increments may be negative as well as positive (hereinafter
called departures and arrivals, respectively). Thus, while the probability
for a certain number of individuals ¢ always varies as the time varies in
the ‘““propagation process’ (2.13), there is a possibility that this will not
be the case in the processes to be considered below, on account of the de-
partures. '

The number of individuals in the “propagation process” (2.13) means
the number of telephone calls or pedestrians passing a certain point in the
course of the time ¢; but in Erlang’s corresponding process, the number of
individuals denotes the number of conversations in progress in an unlimit-
ed group of switches, or the number of pedestrians finding themselves in
a given stretch of street, at the time #. An arrival at the time ¢ means, in
these cases, the start of a new conversation, or another pedestrian’s enter-
ing the street, at the time .

The Poisson distribution considered by Erlang is based on the following
two assumptions, the first of which is the same as that used in the case of
the ‘“‘propagation process’:

The probability that an arrival will occur is asymptotically propor-.  (3.1)
tional to the length of the time interval under consideration and inde-
pendent of the time origin under consideration.

The probability that a departure will occur, 1. e. that o certain in- (3.2)
dividual will cease to be present, is asymptotically proportional to the
length of the time interval under consideration and mdependent of the
time origin under consideration.

The respective factors of proportionality are called A, and A,.

The sought probability P(s,t | §,%,) is the probability that there will be
1 individuals (conversations or pedestrians) present at the time ¢, when §
individuals were present at the time f, previous to . We shall use the

3
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shorter denotation P(¢,t) where there is no risk of confusion; the initial
value is tacitly assumed to be (4,%,).

We will now investigate the probability that there will be ¢ individuals
at the time ¢ 4+ 4¢ by finding all possible combinations of numbers of
individuals at the time ¢, and of numbers of arrivals and departures during
the time interval 4¢, that will result in the presence of ¢ individuals at the

time ¢ -+ 4. By letting 4¢ — 0 we can then obtain a system of differential
~ equations from which P(i,t) can be determined.

The investigation is similar to that of the Poisson process previously
treated in that we have to consider the two cases of 7 = 0 and ¢ > 0.

1 = 0.

The following combinations will give 0 individuals at the time t + A4¢:

Number of individuals Arrivals Departures
at time #: during interval 4¢:
0 0 0 (3.3)
1 0 1 (3.4)

(Some other combinations will give the same result, such as: 2 individuals,
1 arrival, and 2 departures, &c.; but then the probabilities will be asvmp-
totically equal to 0, as a computation would show.)

The probabilities corresponding to the above cases are

P(0,1) u;&dn 1 ' (3.5)
P(1,t) (1—2x, 48 12,4t (3.6)

The probability for the combination (3.3) is the product of the two
probabilities in (3.5), and the probability for the combination (3.4) is the
product of the three probabilities in (3.6), as the probabilities for
numbers of individuals, arrivals, and departures, are independent of each
other. The probability for the other combinations is o (4¢). Accordingly,
P(0,t - 4¢) is the sum of the probabilities thus derived, since the com-
binations stated are mutually exclusive.

We have therefore

P(0,t + 4t) = P(0,£) (1 — ), 4t)
+ P(1,8) (1 — A, 4t) A, 4t (3.7)
+ o (4%)
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1> 0.

The following combinations will give ¢ individuals at the time ¢ 1 A¢:

Number of individuals Arrivals Departures
at time ¢: during interval 4z:
1 1 0o (3.8)
i 0 0 (3.9)
P41 0 1 (3.10)

(and some other combinations, for which the probabilities are asymp-
totically equal to zero).
The probabilities corresponding to the above cases are

P(i — 1,1) A At (1— (i — 1) ), 41) (3.11)

PG, 1) 1— ), 4t 1—i A, At (3.12)
Pi+1,)  1—2, 4t G-+1) A 4t (3.13)

The probabilities for the combinations (3.8), (3.9), and (3.10), are the
products of the probabilities in (3.11), (3.12), and (3.13), respectively, in
analogy with the above. The probability that there will be 4 individuals
at the time ¢ 4 4% is the sum of the terms thus obtained, since the com-
binations are mutually exclusive: :

P(i,t + 4t) = P(t— 1,5) A, 4t (1 — (6 — 1) Ay 4¢E) (3.14)
+ P(e,t) (1 — A, 4t) (1 — 3 A, 4¢)
+ P + 1,1) (1 — A, 4t) (¢ + 1) A, 4t
-+ o(4¢%), 1 > 0.
(3.7) and (3.14) may be written

P(0t +4t) —P(0,1) . A, P(0.) 4+ 2 P (L1) + o(4t) “3.15)

At At

and
POIEA0ZPED ) pi— 10— 0+ 0 Pl +

@+ 1) A PG+ 1,8) + %ﬁ, i > 0. (3.16)

Using (2.5) we obtain from (3.15) and (3.16) for 4¢ —» 0 ‘
P, (0,t) = — A, P(0,t) + A, P(1,1) (3.17)
Py(i,t) = X Pli— L,t) — (A, 4 2) P(6,2) + (i + 1) A, P(i + 1,t) (3.18)

i > 0.

3%
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It was assumed that § individuals were present at the time #,; hence it
follows that

N B =
| Pw%M%%—lm P (3.19)
which we shall call the initial condition.
Now if we may suppose that
lim P(i,t | 4,8,) = P(3), 1 = 0, (3.20)

t—» oo

where not all P(:) = 0, and where the limiting distribution P(s) is inde-
pendent of j and ¢, then (3.20) in connexion with (3.17) and (3.18) will
lead to

lim. P} (i,8) = 0. (3.21)

t—>co

It foltows from. the initial condition (3.19) in connexion with (2.25) that

Z P@,t|jt)=1 (3.22)
because B » '

a = v 2y and B, =), (3.23)

It follows from (3.22) and (3.20) that

m_?mmum_ylmﬂnmm_ZP )=1 (3.24)

t—» 'L—O =0 t—>

N : N
if >' P(i,t|4,t,) converges uniformly to its limiting value Z P(@).
i=0 i=0
This condition is satisfied if there exists a number M such that

e < 9
(V_I"l)/\d k<1l for v> M. (3.25)
(3.24) will always be satisfied for the process under consideration, be-
cause (3.25) is certain to be satisfied for any set of values of A, and A;.
Thus, the limiting distribution P(z) can be uniquely defined by the
system of equations (3.17) and (3.18) in connexion with (3.21) and (3.24),
the solution being

' (Au)i
M),
Pl =\ o, (3.26)

~—~e A,
3!

which, is Poisson’s law, but different in form and meaning from (2.13).
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Erlang has used the phrase that processes which, like (3.20), have limit-
ing values independent of § and #,, may enter into “statistical equilibrium’ .
In the following, a process is said to enter into statistical equilibrium if

t—>
where not all P(¢) = 0, and where P(3) is independent of j and &y, and if
the process furthermore satisfies the necessary conditions for a distri-
bution : ‘

2 Plit]4,5) =1 (3.28)
2 P@E) =1 (3.29)

&
Hence it follows, for all processes to be mentioned here, that

Hm P (2,8 ] ,¢) = 0. (3.30)
[—»

Erlang has never described “statistical equilibrium’’ as a limiting value
of a stochastic process; at his time, however, the mathematicians were
not particularly interested in what happened en route in the development
of such processes, but rather in the results: the non-conditional prob-
abilities'). ‘What made an epoch was his early use of the transition prob-
abilities and the results of statistical equilibrium, (3.21) and (3.24), in
his works; he. utilized, thereby, those of the stochastic processes that
enter into a state of equilibrium which is independent of the initial state.

No proof respecting the conditions under which such a state of
equilibrium may justly be supposed to exist has been found among
Erlang’s papers; nor has he  ever published the general law of distribu-
tion which it would otherwise have been natural to formulate. He applied
the principle of statistical equilibrium to concrete problems only, and only
when he had good reason to believe that there was no risk of misusing it.

It will be noticed that only the ratio between the intensities of arrivals
and departures (and not their absolute numbers) is of importance to the
law of distribution respecting the state of equilibrium P(7). The absolute
values of the intensities are involved, on the other hand, in the general
solution of (3.17), (3.18), and (3.19), where they are especially significant
for small values of (t — ¢,).

It follows from the assumption (3.1) that the distribution for the total
number of arrivals during a certain time interval follows the distribution
(2.13) with A = A,.

It follows from the assumption (3.2) that the distribution for the time

1) See f. inst. L. Bachelier (1900) and (1912).
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¢ during which an individual is present (that is to say, the duration of a
telephone conversation, or the time for which a pedestrian stays in a
given stretch of street) is
— At
p(E)dt = A e dt, (3.31)
the average duration of the stay (the average holding time) belng— that
is, the distribution (1.7) for A = A;. A
The demonstration would become more complicated for a different
distribution of the staying time. This holds good not only for the stochastic
processes considered here, but also for the determination of the law of
distribution in case of statistical equilibrium even though this is not always
dependent on the distribution of the staying time. Erlang did not always
take this into consideration in his demonstrations; but he was well aware
of the significance of the holding time distribution.

4. The Binomial Distribution.

In the preceding chapter dealing with the Poisson distribution, the
assumptions did not contain any restrictions as to the number of individ-
uals that might be present simultaneously. Such restrictions exist, how-
ever, in various practical investigations. Consider e. g. a subscriber’s cable
containing a certain number of circuits N, there are N subscribers connect-
ed to the cable; at most N subscribers can be engaged in conversations
over the N circuits simultaneously; a subscriber engaged in one conver-
sation cannot start a new conversation on the same circuit while the first
is still going on; no new conversations can therefore be started if all NV
circuits are occupied. The transportation of grains of sand in a river affords
another example : a grain of sand, will be either moving or at rest — it must
be at rest before it can start moving. In other words, a limited number of
individuals is divided between 2 groups, viz. individuals being observed,
and individuals not being observed; addition to one group equals sub-
traction from the other.

The assumption respecting arrivals and departures in the case of the
process to be considered in this chapter may therefore be expressed as
follows, (4.2) being an extended form of (3.2):

The total number of individuals is N, divided between 2 groups. (4.1)

The probability that a certain individual belonging to one group (4.2)
shall go over to the other growp is asymptotically proportional to the
length of the time interval under consideration and independent of the
initial point of the time interval under consideration.
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The factor of proportionality is called A, by transition of individuals
from the group not under observation to the group under observation,
which transition constitutes an increase of the number of individuals be-
longing to the observed group. The factor of proportionality is called A,
by transition from the group under observation to the group not under
observation. )

The probability for ¢ individuals under observation (subscribers engaged
in conversation, grains of sand in motion) at the time ¢, when there were
j individuals at the time #, previous to ¢, can be determined by considera-
tions similar to those on which our discussion of the Poisson distribution
was based. The probability for finding ¢ individuals under observation at
the time ¢ + 4t is investigated by means of an enumeration of all possible
combinations of numbers of individuals under observation at the time ¢
and numbers of arrivals and departures during the short time 4¢ resulting
in ¢ individuals under observation at the time ¢ + 4¢. By making a limit
passage, a system of differential equations for the determination of P(4,?)
can be obtained. The investigation is here divided into the 3 cases of s = 0,
0<i¢< N, and : = N.

1= 0.

The following combinations will give 0 individuals at the time ¢ -+ 4¢:

Number of individuals under Arrivals Departures
observation at time ¢: during interval A4z:
0 0 0 (4.3)
1 0 ' 1 (4.4)

(and some other combinations, for which the probabilities are asymptotical-
ly equal to zero). ‘
The probabilities corresponding to the above cases are

P(0,1) C (1—DN A, 4 L (4.5)
P(1,1) (1— (N — 1) A, 4¢) 1), 4t (4.6)

The probability for the combination (4.3) is the product of the prob-
abilities in (4.5), and the probability for (4.4) is the product of the prob-
abilities in (4.6), the probabilities in (4.5) and (4.6) being mutually in-
dependent. Since the combinations stated above are mutually exclusive,
we have that P(0,{ + 4¢) is the sum of the terms thus obtained:

P(0,¢ + At) = P(0,t) (1 — N A, 4¢) (4.7)
+ P(1,8) (1 — (N — 1) A, 4¢) ), At
1+ o(dt). '
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0<s <N.

The following combinations will give ¢ individuals under observation
at the time t + A¢:

Number of individuals under Arrivals Departures
observation at time #: during interval 4z :
i—1 1 0 (4.8)
i 0 0 (4.9)
i+ 1 , 0 1 (4.10)

(and some other combinations for which the probabilities are asymptot-
ically equal to zero).
The probabilities corresponding to the above cases are

Pli—1,t) (N—i+1)A, 4t 1—@G—1)A 4t (4.11)
P(i,1) 1— (N —i) A, At 1—ix, At (4.12)
Pl +1,t) 1—(N—i—1)) 4t (@ +1)2, 4t (4.13)

The respective probabilities for the combinations (4.8), (4.9), and (4.10),
are the respective products of the probabilities in (4.11), (4.12), and (4.13);
and P(i,t -I- 4t) is the sum of the terms thus obtained.:

P(i,t 4 At) = Pl — L,t) (N — i + 1) A, 4(1 — (5 —1) A, 4¢%) (4.14)
L P@,E) (1 — (N —4) A, 48) (1 —3 A, A1)
PG A+ Lty (1— (N —i— 1) A, 48) (i + 1) A, 4t
-+ o(41).

i=N.

The following combinations will give N individuals under observation
at the time ¢ - 4¢:

Number of individuals under Arrivals Departures
observation at time #: during interval 4¢:
N—1 1 0 (4.15)
N 0 0 (4.16)

(and some other combinations for which the probabilities are asymptot-
ically equal to zero).
The probabilities corresponding to the above cases are
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PN —1Lt) A4t 1 — (N — 1) ,4t . (417)
P(N,t) 11— N A4t . (4.18)

whence, by analogy with the above,

P(N,t + 4t) = P(N — 1,t) A, 4¢(1 — (N — 1) A; 4%) (4.19)
+ P(N,t) (1 — N a; 4¢)
-+ o(4t).

From the equations (4.7), (4.14), and (4.19), we obtain the following
differential equations for 4¢ —- 0:

P(0,) = — N A, P(0,2) + A, P(L,3) (4.20)

Pllit) — (N —i + 1)), Pli— 1,1) — (N — i) A, + i Ag) P(i,1) (4.21)
G P+ LY 0<i<N

PUN, )= A, PV — 1,5 — N A, P(V,2). (4.22)

As the initial value is (4, £,), the process — which we may call the bino-
mial process — must also satisfy the corresponding initial condition.
If the process attains statistical equilibrium, we have

N
> PG) =1, (4.23)
i=0

for which it is a necessary condition that the coefficients entering in the
given differential equations are bounded.

The limiting distribution P (i) is thus uniquely determined by the
(N + 2) equations (4.20) — (4.22) and (4.23) in connexion with (3.21),
since the rank of the system of equations thus obtained is (N - 1); hence

(N A VA )N—i o
P(@)—(i)<)‘d+%)(/\d+}\a , 1=0,1,-+, N,  (4.24)

or the binomial law with a probability depending, like the mean of the
Poisson distribution (3.26), only on the relative values of A, and A, and
not on their absolute values. The absolute values play an important part,
on the other hand, in the binomial process, the general solution of (4.20)
— (4.22) satisfying the initial condition, as it will appear from the follow-
ing.
It will sometimes be convenient to make use of the matrix symbolism?)
_in our discussions of the process of the binomial law.

1) See e. g. Bohr & Mollerup (1938-—1942), Aitken (1944), Bicher (1908).
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A matrix 4 of order mn is a rectangular scheme of numbers or ele-
ments a,; arranged in m rows and n columns:

W1y Gz .. Gy

a a v @
A — . -21 -22 ‘271,

By X - - - (Zmn

We use the brief symbol 4= {a;}, and when we want to indicate the
order of the matrix, we write 4,,, instead of 4. 4,, is a square matrix.
E denotes a square matrix A,, where o, = 1 and a; = 0 for 7 4 4.

The sum of two matrices' 4 = {a;;} and B = {b;} of the same order
is the matrix C = {c;} = {a; + b;,}.

If the matrix 4 has as many columns (n) as the matrix B has rows,
the product matrix C of 4 and B is defined and given by

7
Cij = 7;; Oz bys»

that is to say, 4,,, B, = C,,;-

The transposed matrix 4* = {a}} is a matrix of order nm such that
its elements aj; = a;,. ‘

To a square matrix 4,, corresponds a number 4 known as the de-
terminant of the matrix 4,, such that '

A= D" ay 0y ... 0, (—1)F6F 9,
(2,5, ++,8) . .

where (4,4,...,s) is a permutation of the numbers (1,2,...,7n) and
I(i,9,...,s) is the number of inversions.

A determinant retains its value if a linear combination of the other
rows (columns) is added to one row (column).

The matrix P(t,1,) is { P(i,t| j,to)}. The matrix P(i,%,) is square, its order
being (N + 1) (N 4 1) in the case of the binomial law discussed above.

Pi(i,t,) denotes the matrix whose elements are differential quotients
of the elements of P(t,4,), that is to say, P;(t,t)) = { P;(i,t | j,t,) }.

Using this symbolism, we may reduce the system of equations (4.20)—
(4.22) to the form

Pl (t,t0) = AP(,1,), (4.25)
where
—NA, A , 0 , 0 ..., 0, 0 ,
N2, —(N—1)A,—2,, 22, , 0 ,..., 0, 0 )
0, (N—1A ,—(EN—2)2—21,3%,,..., 0, 0 ,
0, 0 , 0 , 0, 20, —A—(N—1)A, N2,
0, 0 , 0 , 0 ,...,0, A, —NA,|

(4.26)
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or A = {a;}, where

“j—l,j:j/\d’ j=1,..., N,
a,; =—N—=9)A—7jk =0 ...,N, (4.27)
a’:i—i—l,;i:(N—j)’\a: j=0,...,N—1,

whereas all other elements are zero.
The initial condition may be written

P(ty,t)) = E. (4.28)
The solution of this system of differential equations having a matrix

A which is independent of time can be written in the form

N
P(t,ty) = >V, Uy ¢t (4.29)

=0

where V, and U, are matrices of order (N + 1) 1 known as vectors, that is,

J Voy l J Uy |

V,= Vl U,= D:l" (4.30)
[, i

and. where the characteristic numbers To» T1r Tas - - -» Ty are TOOLS in the

secular equation R(z) = 0 corresponding to the matrix
R@x)=A—=zE, (4.31)

The form (4.29) is conditional in that we must have », 4 r, for » & p.

Evaluation of the characteristic numbers of the secular equation.

The characteristic numbers of the secular equation corresponding to
(4.26) can be evaluated by simple row operations in R(x); the operations
will not change the value of the determinant.

The determinant R,(x) can be obtained from the determinant E(z) by
using,

ws 1st row of Ry(z), the 1st row of R(x);
as 2ndrow of R,(x), the sum of Ist and 2nd row of R(z);
as 3rd row of Ry(x), the sum of Ist, 2nd, and 3rd  row of R(w);

as (N--1)th row of R,(x), the sum of Ist, 2nd, .. ., (N+I1)th row of R().
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The determinant R,(x) is obtained from the determinant B(z) by using

as Ist row of Ry(z), the 1st row of R, (x);
as 2nd row of Ry(x), the sum of 1st and 2nd row of Rq(x);
as 3rd row of Ry(x), the sum of Ist, 2nd, and 3rd  row of By(x);

as Nth row of Ry(x), the sum of Ist, 2nd, ..., Nth  row of Ri(x);
as (N+1)th row of Ry(x), : the (IV +1)th row of Ry(x).

The determinants Ry(x), Ry(x), ... are obtained similarly, the (I +1)th
and Nth rows of R,(z) being retained in the next operation, and so on;
accordingly the summation will stop automatically with Ry ().

In order to determine the elements of Ry (x) we will employ a convenient
auxiliary operation consisting in repeated summation of a sequence of
(V' + 1) elements where the mth element is unity and all others are zero.

No. 0 1 2...mm+lm+2...v ... N—1 N
Elements. ........ 0o 0 o 1 0 0 0 0 0
Istsum .......... 0O 0 0. 1 1 1 1 1 1
2nd sum ......... 0 0 0 1 2 3 v—m+l N—m
$rd sum. ......... 0 0 o 1 3 6 (V—,""“Lz)

&c. - 2

Element no. v in the uth sum will be

mz(”“m+"‘_l). (4.32)
wv w—1

This auxiliary operation may be applied to the individual elements in
the columns of R(z): According to (4.27) in connexion with (4.31), the ele-
ments in the jth column are

a’j.—l,j:j)‘d: . 5:1:"-5N:
a'i",:" zw(Nb—?)Aa'—?)‘d__'a/’ j=09-‘-,N, (4:33)
Gy, = (N —1) A, j=1,...,N—1,

. and the others are zero. ,

By analogy with the foregoing, the elements in the jth column of
Ry(x) = | r;(x) | can be obtained by repeated summation of these N -+1
elements, all of which are zero except the (j — 1)th, the jth, and the
(7 + 1)th. The 1st sum will be element no. N; the 2nd sum, element no.
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(N —1); the 3rd, no. (N —2); ...; the (V 4 1 — ¢)th, no. 7. Similarly,
we may take it that element no. 4 in the jth column 7, () 1s obtained as
the sum of the corresponding sums of 3 columns Where the ( — 1)th, the
jth, and the (7 4 1)th elements, respectively, are different from zero.
- Then, using the result of the auxiliary operation (4.32), we have
ry(®) =7 A, yi.\’_—i—ll—z‘,i + (= —g) A, —] A —2) y§v+1—i,i (4.34)
+ ( '—'7) }\ yi\;'—_l-ll——z 1

NOW R'(x) ={ r(x) } can be obtained from RN(x) by the following row
operation:

Ty; (@) = ry; () ,

Tigar () j < N
i1 (%)

=y (4.35)
Tig1iy1 (®) 4= N—— 1, , 0.

7':7‘ (%) = g () —
which will change neither the value of the determinant nor the values of
the characteristic numbers.

When the reductlon is completed, the elements of the determinant
R’ (x) will be

=0,...,N

Y
, 4.36
1=0,...,N ( )

: N—j :

i) =—(y 1) O+ 2 i)+
since (4.36) is satisfied for s = N, as it will appear from (4.35), (4.34), and
(4.32), and since insertion of (4.36) in the right-hand s1de of (4.35), using
(4.34), glves

’

Lo Nj \Ou W) —i1) 42
iy @) = 145 @) — "”(zv-a—l)mawd) i Ta’

_ia <N1;—7_—]Z— 1) —(N—j) )\a“l‘f)‘d"l‘?) G:;:Z:)-I—(N—«?') )\a<NN—i—;1>
0 e

v
= — (y _ )@+ 2) @ —i) + o)

this being (4.36), we have thus completed our inductive proof.

According to (4.36), all elements of the determinant R’(x) are zero for
j >, and the value of the determinant is therefore the product of its
diagonal elements:
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N N
R'(z) = 'I_IO rii@) = I (— (s +2) &V —1i) +2));  (4.37)

=0

hence it follows that the sought characteristic numbers are

TV:_—V()‘U,—’_ALZ) V:O,l,...,N- (438)

In order to determine the vectors in (4.29), Vyand U,; v = 0,1, ..., N,
we will now introduce (4.29) into the original equation (4.25), using the
characteristic numbers (4.38). We get

N

SHUA+v(A + ) BV, Uf e vPatdt—t0 — g, (4.39)

v=0

-since this must be satisfied for all values of ¢, it is necessary that -
A+vQA, +2) E)V,Uf=0, v=0,1,...,N. (4.40)
But this means that the vectors
(A+?(A4+A[Z)E)Vv=0, v=20,1,..., N. (4.41)

The matrix 4 + v (A, + A;) E is of rank N, as all roots are single roots;
hence it follows that each system of equations (4.41) with the unknown

vectors V, has a solution depending on one parameter k,, and a single

v
A

solution V,:

V, = V.. (4.42)

Now, if we introduce (4.29) into (4.28), the condition can be written in
the form

J\T
>'V,U; =E. (4.43)

v=0

Combined with (4.42) this gives

N A
> V,k, U =E. (4.44)

=0
Putting &, U = U*, (4.44) may be writiten
VU —E (4.45)

where V and U are matrices consisting of the original vectors ¥, and U,
such that
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V=A{Vo Vi -, V) (4.46)
and U={Up U, ..., 0. (4.47)

But )I> consists, by (4.41), of (N + 1) mutually linearly independent vec-

tors so that } has the rank (N -+ 1). Thus there is one and only one solu-
tion of the system of equations (4.45).
Consequently, (4.25) has one and only one solution satisfying the con-

-~

dition (4.28). This solution is (4.29) with ¥, U* = ¥, U¥, where V,

v

and, [7,, are determined by (4.41) and (4.45), and the characteristic num-
bers r, are determined by (4.31).
It follows from (4.29) and (4.38) that the process of the binomial law
treated here has a limiting distribution for ¢ —- oo, wiz.
im P(t,3) = Vo, Uf. (4.48)

t—> 0o

The matrix A being bounded, we have by (4.25) and (4.28) that

N
Z P@,j)=1, 4§=0,1,..., N, (4.49)
i=0

or, using (4.48),
N
S v euo=1 §=01,...,N, (4.50)
i=0

from which it appears that u, , is a constant not depending on j, and that
P(i,7) does not depend on ;.

But this means that the binomial process when ¢ —» oo attains statis-
tical equilibrium, which is given by

AVy=10 (4.51)
combined with
' N
Z Vi 0 = 1, (4.52)
1=0

the result being (4.24).

In determining the binomial process we shall apply the method of solu-
tion stated above only to the case of N = 1, for which the matrix is de-
fined by (4.26)

- Aa, )‘d
4 = { : } (4.53)
A, N

According to (4.38), the characteristic numbers of the corresponding
secular equation are
ro =0, r=— (Au + Ad) (454)
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V, and V; can be formed by means of the systems of equations (4.41)

which may be written
IS RN
N—) Lo Lo

| A /\dl { ”o,1}=
| A Ay V1,1

P
[s=J )
E—

a

that is to say,

v A v 1
{ 0;0}21 d}ko { 0,1[={ }701-
V1,0 l Ay V1,1 J —1
Next, U can be found by means of (4.45) which may be written
{/\d 1 {710,0 120’1} {1 O}
M——l} dho | Lo 1)’
the solution of this system of equations being

1 A,
| o0 o1 } - At Nt

A A
I U0 U1 1 — Az

Mt A AT

The matrices V, Uy* and V, U;* are thus

Ad A¢2l
VU* { d}’ 1 1 } Ad+Aa Ad+Aa
o Ay ] NN Mt A T A, A,

’\d+ )‘a )‘d_l_ )‘a

Aa _Ad
I 1 A —')\d }‘d+Aa, }‘d+/\a
V1 U1*: { 2 s }=
l—1f 1+ A A+ — 2, by

N A A

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

The complete solution of (4.25) and (4.28) is obtained by substitution of

(4.54), (4.60), and (4.61), in (4.29):
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A Ay Ay — N ]
NN A2 MEA A A
P (t,1) = ] a | 4 @ a o Ag +Ag) (t—t) (4.62)
Aa }\a — )\a }\Cl
NEA AT l/\d—{—/\a A+ A,
or, in a more elaborate form,
A A
P(0,1]0,t) = pp, = NI S L PR IO
o) = Do AN A A A,
A A
P(1,t]0,t) =¢q, = L a 6—()‘.,l+)\d)(t—to)

S A ‘
(4.63)

P(0,t ] L,t) = p, = 0 o Ay e Qg+ M)t —to)
A, A
_ P(1,t| L,t) = qq = -4 4 g Qg+ M) —t)

NTA A,

from which the solution of (4.25) and (4.28) for any N can be derived. If
j individuals out of the N possible are under observation at the time £,
then there may be 7 individuals under observation at the time ¢, if v out
of the § are still under observation, and ¢ — v out of the N — § individuals
not under observation go over to the observation group; in the meantime,
the j — » individuals under observation have gone over to the group of
individuals not under observation, whereas the N —j— (i—v) individ-
uals have remained unobserved. The probability for this, written with
the notations used in (4.63), is

. . U ] ;e N —y —_—f—gtv
Patii =3 (D) awi= (N dmmy—er e

v=0

which may also be written

. . 1 . - )
P(i,t | §,ty) = — Do (P1 + 242) (po + QOZ)N_y- ‘ (4.65)

v!

It follows from (4.63) that

. . )‘d
Hm py = limp, =p = 5 Y
i—> 00 t=—> 00 @
A (4.66)
]im = ]_]_m = —— @ f
t_+m90 t—)-ooQI q A+ A
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80 that (4.64) leads to

lim P(i,t | §,t,) = <N > gt p¥ e (4.67)
t—> oo v
which, is the binomial law (4.24).

It will appear from (4.63) and (4.64) that the absolute values of A, and
A; are of consequence to the rapidity of the limit passage. For great inten-
sities A, and A;, the limiting distribution will occur earlier than for small
intensities; in other words, the limiting distribution will be established
more quickly when there are many but short-lived arrivals than when there
are few but long-lived arrivals.

The mean number of individuals being under observation at the time ¢
ig given by (4.64), putting ¢ = (+ —») 4 »:

N
M,= > iPGt|jt) =Ng+(§—DNg e~ Qo+ Ag) =), (4.68)

=0

for ¢t —> oo, the mean value will change from § to the mean value N g of
the limiting distribution.
The variance at the time ¢ in the distribution (4.64) is

¥ :
V.= Z(; (7'_‘ My)2 Pt | §,ty) = §p191 + (N — ) Do%o (4.69)

so that the dispersion passes from 0 to VN pq as t passes from ¢, to oo.
The mean value and dispersion in (4.68) and (4.69) are plotted for
N =15, j = 12, A, = 0.0608, A, = 0.1216, in fig. (4.1).

As the Poisson distribution may be interpreted as a binomial distribu-
tion where the number of individuals increases unrestrictedly, while the
increase in the number of individuals under observation is fixed, the gener-
al solution of (3.17) and (3.18) satisfying the condition (3.19) will be ob-
tainable as the limit of (4.64) for N — oo and (N — ) A, = A,.

Putting (4.64) in the form :

. . : ? v _j—yv (N—'?)l_v )\a, G _ b i—
P(“’t”’t"):%(u)qwi (i — ) <A +A> (1— ¢~ et da) =ty
= : d @

A N—j—i-tv A N—j—i+v
<— 4 ) <1 + 2 g Pat D) “—m) (4.70)
)‘d + Aa Ad

and letting V —» oo, we obtain the limit
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i -
Plitlit) = 2, (1) a0 — ey (4.71)
v=0 \V
1 A\ ) Na NMa ) t—t)
— (2 (1— ¢ Mal—tyi=ve™ 3 73 ¢
(¢ —»)! <’\d>
which may be written
P(i,t | §,8) = | (4.72)

i INi—vy N, — A, (t—t, . )
S 1 <ﬁ> — A_; (10, N =) <? ) MUt (1 g g e —tyii—2y,
=0 (1—v)1\); v/

which, for X, = A, is the general solution; for # —-co, the result is (3.26).
The solution (4.72) has been derived by Conny Palm?) in a different man-
ner. '

The mean value and the variance in (4.72) can be obtained e.g. by
making a limit passage in (4.68) and (4.69), the results being

AI AI
M, =12 4 (7- — _«z> =t (4.73)
A Az ‘
Aa' g Gt A
V, =5\—- + jea (t—t0) (1—e " (t—t“‘))_ (4.74)
i :
These are plotted in fig. (4.2) for values corresponding to those of the
A
previous example, with A, = N2, e
) ¢ )‘a + ’\d

5. The Truncated Poisson Distribution. Erlang’s Loss-Formula.

The assumptions (3.1) and (3.2) stated in the chapter on Poisson’s
distribution do not suffice in quite a number of cases; in practice there
will sometimes be an upper limit to the number n of individuals that can
be observed simultaneously. This may be the case e. g. in problems con-
cerning the conversation-carrying circuits in a junction group of » circuits,
or the traffic-carrying lanes of a road with n lanes. The assumptions (3.1)
and (3.2) must, in such cases, be supplemented with. the following assump-
tion:

At most n individuals can be observed simultaneously. Arrivals (5.1)
ocourring during periods when n individuals are under observation
shall be disregarded.

1) See C. Palm (1943).
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This is to be intierpreted to the effect that admittance will be refused to
new-comers (calls or vehicles) in the examples mentioned above.

The assumption (5.1) does not affect the differential equations (3.17)
for 7+ = 0 and (3.18) for 0 < ¢ < =.

1=,

The following combinations will give % individuals at the time ¢4 4¢:

Number of individuals Arrivals Departures
at time #: du:;'ing interval 4¢:
n—1 : 1 0 (5.2)
n o 0 0 (5.3)

(and some other combinations, for which the probabilities are asymptot-
ically equal to zero). '
The probabilities corresponding to the above cases are
P(n— 1,1) A At (1 — (n— 1) A;4%) (5.4)
P(n,t) : 1 : (1 —n 24%) (5.5)

Hence it follows, in the usual manner, that

P(n,t + At) = P(n— 1,) A, 4(1 —(n — _1)"Ad;1t)' o (5.6)
+ P(n,t) (1 — n A,A%) '
=+ o(41),

which leads to the differential equation.
Pin,t) = A P(n— 1,8) — n AP, 1) 5

The truncated Poisson process must thus satisfy the differential equa-
tions (3.17) for ¢ = 0, (3.18) for 0 < ¢ < m, (5.7), and the initial condition.
If the process attains statistic equilibrium, we have

Zj; P@) =1, o o (5.8)

for which it is a sufficient condition that the coefficients entering in the
given differential equations are bounded.

The limiting distribution will therefore be determinable from (3.17),
(3.18) for 0 < ¢ << m, (5.7), (5.8), and (8.30). This system of equations has
one and only one solution :
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)

7!

SO

v=0 !

Pi) = (5.9)

The probability for observing the maximum number of individuals is
obtained for ¢ = n; all arrivals will be rejected throughout the duration
of this state (all new calls will be lost):

Pn) = ———— (5.10)

This expression is called Erlang’s loss formula; applied to the above-men-
tioned example, a junction group of n circuits without any waiting device,
it indicates the probability that a call cannot get through.
As in the previously mentioned cases, only the relative values of A, and
), are of consequence to the distribution function in statistical equilibrium.
The mean number of observed individuals (the mean number of occu-
pied switches) is, by (5.9),

_Sj’ i P(i) = % (1 — P(n)). (5.11)
d

=0

2

This, and not the amount —2 of traffic offered, is the value that is found
d

by measurements in practice.

6. The Truncated Binemial Distribution.

Just as there is a truncated Poisson process corresponding to the ordi-
nary Poisson process, there is a truncated process corresponding to the
binomial process treated in Chapter 4. There may be cases among the
problems belonging under the assumptions of the binomial law, where at
most » individuals can be observed simultaneously (n << N). This is the
case e. g. where IV subscribers, connected to a subscriber’s cable contain-
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ing n circuits, can carry on at most n conversations simultaneously. In
such, cases the assumptions (4.1) and (4.2) must be supplemented with the
assumption (5.1).

This assumption does not affect the differential equations derived in
(4.20) for ¢ = 0 and in (4.21) for 0 < @ < m, but it affects the case of i = n.

1 ="n.

The following combinations will give » individuals at the ‘time ¢ + Ai:

Number of individuals under Arrivals Departures
observation at time #: during interval 4.
n—1 1 0 (6.1)
n 0 0 (6.2)

(and some other combinations, for which the probabilities are asymp-
totically equal to zero).
The probabilities corresponding to the above cases are
Pn—1,1) (N—mn +1)2,4t 1—(n—1)1,4¢ (6.3)
P(n,t) 1 1—mn A48 (6.4)

Hence it follows in the usual manner that
P(n,t + 4t) = P(n — 1,t) (N —n + 1) 2,481 — (n — 1) \;4t) (6.5)
+ P(n,t) (1 —n A;47%)
+ o(4%)
- which leads to the differential equation
Pi(n,t) = (N —mn + 1) A, P(n — 1,t) — n A; P(n,?) ©(6.6)

which, combined with the differential equations (4.20) for ¢ = 0 and (4.21)
for 0 < ¢ << » and the initial condition, defines the truncated binomial
process.

If the process attains statistic equilibrium, we have

n
D> Pi)=1 : : (6.7)
1=0
for which, it is a sufficient condition that the coefficients entering in the

given differential equations are bounded.
The limiting distribution, if any, will therefore be determinable from
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(4.20), (4.21) for 0 < ¢ < m, (6.6), (6.7), and (3.30). This system of
equations has one and only one solution

i ) B
1/ \ g+ A\ A P01 . !

P@) = — SERY. s
é; <Z:T> </\a jf /\d> <?\a :\lg—l Ad>N

which may be written in the form

6

Pli)=———C _ §=0,1,...,n  (6.9)

SO0

The probability for observing the maximum number of individuals is
obtained for i = n, which — in the terms of the above mentioned example
— corresponds to the probability for all circuits being occupied by con-
versations in a subscriber’s cable containing » circuits and serving N(> n)
subscribers.

The mean number M of observed individuals (mean number of occupied

circuits) is, by (6.8),
SO T
Aa p=0 v Aa + Ad Aa + }\d .

Ag+ 2 /N A, )” Az )'N'—"
go(v)()\a—{—)\d <)\a+)\d

this, and not the amount N

M= f i P(i) = (6.10)
=0

A N
2 — of traffic actually offered, is the value
o+ Ay

a
that is found by measurements in practice.

Some Applications of the Truncated Binomial Distribution.

Erlang applied the truncated binomial distribution especially to the
elucidation of various problems in connexion with the above mentioned
example where altogether n(<< N) switches are available to N subscribers,
and all subscribers are supposed to have the same call traffic, consisting
of incoming as well as outgoing calls.

The probability g, that one, or more, of the » co-operatmg sw‘ltches
will be free is, by (6.9),
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nNY /A,
In=1— (n):%f’li@

S06

The probability g, that a partiéular subscriber will be disengaged is

(6.11)

‘ 2L (N—1\ /A\
ov—i, 2l &)
— . v= v d
- = 6.12
w= 3 P S : (6.12)
=0\, /\Ag
the probability that he is not included among the 4 subscribers engaged in
N—1

conversation being —

The probability g, that a particular subscriber will be disengaged, and
that there will be a free switch among the n switches in the group, is ob-
tained by omitting the last term in (6.12), the result being

oL N1\ A,V
DN e ¥

gNn=gO ~ P = n—'u_/\L .. (6.13)
S06) |
v=01\, ;\fl
From (6.12) and (6.13) we may derive :
Ca )G
N—n 7 A,
¥y~ = —— Pln) = : (6.14)

SO0

~which, is the probability that a given subscriber is disengaged and the
group (all » switches) is occupied.

The probability that a dlsengaged subseriber cannot be called because
all n switches in the group are occupied is

U6
gN_gN,nzl__gan n Ad
Iy Iy & (N— 1) (?\ >
g‘b ( v Ad
which also represents the probability that the other N — 1 subscnbers

are occupying the n switches 'in the group when the glven subscriber
wants to use his telephone.

(6.15)
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7. Truncated Multidimensional Distributions.

In several cases Erlang employed simple truncated multidimensional
distributions when investigating special loss problems. In addition to the
cases treated by Erlang we shall include some other cases in the following;
also, we shall make a detailed investigation of the scope of the method
employed. The terminology used in discussing the problems is that of
telephony, since all the chosen examples belong in this field; but this does
not mean that other domains cannot turn such problems to account.

The assumptions (3.1) and (3.2) of the Poisson distribution are tacitly
understood to be valid for the sources of traffic to be considered, unless
. directions to the contrary are expressly stated. Some of the problems in-
volve the employment of assumptions corresponding to (5.1). For clear-
ness’ sake the following abbreviations are used:

by = Ay At(L — v 3, A1), | Bri = ;s (7.1)
c,, = (1 ﬁ)\ai 4t) (1 — v )\diAt)
a,vi:(l———/\aiﬁt)v)\diﬂt 0»-=V/\,zi;

vl

and the matrix corresponding hereto,

A4@) ={a,,0} - (7.2)
where the elements
sy, 50 = g;, s=1,...,n,
G o) =—ay—PBy, §=0,...,m, (7.3)
as—!—l,s(i)zﬁsi; SZO, ...,ni——l,

and the remaining elements are zero.

L / ,«
The amount of traffic that requires handling between the exchanges 4

a

and H is y, erlang (yl =3 ) ; the amount of traffic that requires handling

A
between the exchanges B and H is y, erlang (y2 = ﬁ), cf. fig. 7.1. The
dy
probability for a desired change in the number of call connexions estab-

lished between 2 exchanges does not depend on the number of call connex-
ions established between the other 2 exchanges. The given trafficis offered
to m switches (junction lines) on the stretch BA, and to » switches on
the stretch AH. We seek the probability P(v, u, ¢ | 7, s, t,) that there will
be v connexions on the stretch AH and p connexions on the stretch BAH
at the time ¢, when there were r and s connexions, respectively, at the
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time t, previous to ¢. The switches in the 2 groups B4 and AH are supposed
to be co-operating as simple groups?).

The possible combinations of v and p are given by

0 +v £ (7.4)
0= I < m
Oév—[—‘u.én

as shown in fig. 7.2.

Fig. 7.2.

P(v, u, t) can be determined by the same procedure as that followed
hitherto. We find the probability P(», u, t -+ 4¢), where £, < t < 4 44,
by means of the possible combinations of states at the time ¢ and arrivals

1) The symbol P(, p, t) will be used instead of P(v, p, ¢ | 7, s, t;) where there is no risk of
confusion. )
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and departures during the time interval 4z that will result in the state
(v, p) at the time ¢ 4 A¢. After a limit passage we derive a set of differential
equations which, with some conditions, define the sought process.

Thus we obtain the following system of equations for the determination
of P(v, p, t + 41):

P, p, t + 4t) =b, 4, b,u—-1,2 Poy—1Lp—L1t)+0b,,, Cp,2 P(v—1,p,1)
+ b1 O Py —1,p+ 1,1
F 10y g P, p—1,8) + ¢, 10,5 P(v, p, 1)
A Cht Oy P(Va p o+ 1,‘, £)
i1 g PO+ L p— 1,040,450, P41, p, 7)
t 0,10, 0,02 P+ 1,0+ 1,0)
1 o(4t) (7.5)

which is valid for all points (v, u) inside the range (7 4), see fig. 7.2., and
— with modifications corresponding to the results found for the truncated
Poisson process and the truncated binomial process — for the marginal
points, too.
Since
lim Py, p, t + 4t) — P(v, p, )

4t—»0 : 4t

= Pj(v, u, t), (7.6)

(7.5) may, after the limit passage, be written (using the symbols defined

n (7.1)): -

Piv, p, t) =

Bv——l,IP(Vﬁ L p, t)+ﬁp—l,2P(V’ o lat)_—"(ﬁv,l_l_ Ay 1 + Bp,,?. + “,.:,,2) P(”: s t)
Ao g PO p A Lt) +oayy P 4 1,y ) (7.7)

which may also be given the form

P;(V’ B t) = ‘ (7.8)
Bv—l,l Py —1, p, 1) — (lgv,l + av,1) Py, B, 1) + Ayiq,1 Py +1,pu,t)
+ By.—l,ZP(V’ e 1: t) - (lB;L,Z + ap,,z) P(V: s t) + a’[L+1,2P(V> :“’+ 1: t)

The process must furthermore satisfy the conditional equation

1 for (v, u) = (r, 8)

0 for (v, ) £ (7, 9). (7-9)

P(V,‘Uz,tolr,s,to)z{
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As ‘ > > Py, p, t) =0, (7.10)

1

where £, is the range stated in (7.4) and shown in fig. 7.2, it follows from

(7.9), for n and m finite and B,; and o, ; bounded in acecordance with (2.24),

that

D D P, t]r, s )= 1. (7.11)
2

1
If statistic equilibrium can occur, as expressed by

lim P(v, p, & | 7, 8, £) = P(v, ) (7.12)
t—>
where not all P(v, u) = 0 and the limiting distribution does not depend
on the initial value (r, s), it will follow from (7.7) and (7.12) that

Hm P, p, 8| 7, 8, 8) = 0 (7.13)

t—> o0

and that (7.11) is also satisfied for the limiting distribution

ST S P, =1 (7.14)

The limiting distribution is therefore defined by (7.7), (7.13), and (7.14).
The system of equations (7.7) with the condition (7.13) is satisfied by

P(y, 1) = ,P2(3) Polp) (7.15)
where P;(v) and P,(n) are solutions of the systems of equations

0=4, P, | (7.16)
0=Ag P. (7.17)

where the matrices 4, and A, are (7.2) for n, = n and n, = m, and
P, and P, are vectors whose respective elements are P,(0), ..., Py(n) and
- Py(0), ..., Py(m); the constant %, is determined from (7.14). But (7.16)
and. (7.17) are systems of equations determining one-dimensional limiting
distributions of the truncated type. Under the assumptions chosen here,
P, and P, are truncated Poisson distributions, so that the results of Chapter
5 respecting the truncated Poisson distribution are immediately appli-
cable, and so we obtain :

yi ¥y

P, p) =k = —.
vi w!

(7.18)
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Calls from exchange A to exchange H or wice versa will be lost if they
are originated while

vtp=n forv=n—mn—m-+1...,0.  (7.19)

This state exists during a fraction of the time

Eug= > Prn—yv) (7.20)

v=n—m

which thus indicates the probability that a call AH will be lost.

Calls from exchange B to exchange H or vice verse will be lost when

no=m, v=20,1,...,n—m—1,

and pwt+v=mn, v=n—m,n—m+ 1, ..., n%. ‘ (7.21)

The probability for the occurrence of this state is

n—m—1 n :
Epy = Z P(v,m) + Z P, n —v). (7.22)
=0 p=n—m E

The mean number of occupied switches in the group AH, which is
equal to the handled amount of traffic, e,;, measured in erlang, is

éAH = ZQZ (v + p) Pv, p) = y2(1 — B ,4g) + yo(1 — Epg); _ (7.23)

this is the value that is found by measurements on the group AH.
The mean number of occupied switches (the amount of traffic handled)
in the group BA, ey, measured in erlang, is

e = ZQ ST Py, p) = yo(1 — Bypy) (7.24)

IT.

We will now consider a case where the traffic from the exchanges 4
and B to the exchange H is directed over the transit exchange 7', see fig.
7.3. The amount of traffic that requires handling between exchanges A
and H is y, erlang; between exchanges B and H, y, erlang. There are n
switches between exchanges A and 7T'; m between B and T'; p between 7'
and H. The assumptions are the same as under I.
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B Ve
Fig. 7.3.

The possible combinations (v, u) of numbers of call connexions established
between exchanges A and H and between exchanges B and H are bounded
in the range 2, as defined by

0= v = n
0 uw =m (7.25)
0=v+pu=p;

hence quite naturally n = p, m = p, and p = n - m, which we shall take

for granted in the following even though it does not influence the results.
The range £, is represented graphically in fig. 7.4.
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Our present case differs from the preceding one only in the magnitude
of the range 2,; the nature of 2, and , is such that neither will influence
the method of demonstration of I essentially. The limiting distribution
can therefore be derived from the results obtained in I, and so the determi-
nation of the constant is alone depending on the difference between the
2 ranges £2; and £,. Accordingly the limiting distribution will be

Y1 ¥k

Py, p) = ks ] F (7.26)

where the constant %, is determined from

D> > Py, p)=1 (7.27)
[
The stretch 7'H is fully occupied when

so that the probability that TH will be occupied is

By = > P, p—v), (7.29)
) yv=p—m

while calls from A4 to H will be lost when ‘

v=mn Or v+ pu=7p, (7.30)

so that the probability that a call will be lost is

p—n—I1

AH”“ZP’””F’)"F S‘Pp_—‘ll"l") (7.31)
pu=p—mn
Calls from B to H will be lost when
=Mm Or v+ pu=29p (7.32)

so that the probability that a call will be lost is

p—m—1

Byge 3 Pom)+ 3 Pop—v).  (1.33)

=0 y=p—m

In terms of erlang, the amounts of traffic handled over the stretches
TH, TA, and TB are

erg = 7 Z + ) P(v, p) = y:(1 — B 45) + yo(1 — Hpp) (7-34)
bpyg = ,ZQZ v P(v, ) =yl — B 5) (7.35)
= 3 5 p Pl ) =gl Fam). (1.36)

These are the amounts of traffic that are found by measurements.
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IIT.

The examples discussed under I and IT may be extended to comprise a
network of M exchanges connected to exchange H over the transit ex-
change 7T'. The amount of traffic that requires handling between exchanges

A
A, and exchanges H is y, = 7\1& , the traffic being led over n, switches
d

n
to the transit exchange 7' and from there over p switches to exchange H,
or wice versa, see fig. 7.5.

It is natural to suppose that

S
A
B
=

I

S

(7.37)

and , P

IA
M
:3

Fig. 7.5.

This extension leads to the following system of differential equations for
" the determination of P(vy, vy, ..., vpr, 8| 71, 79y « o o, Typs £)

Pt'(vl,...,vM, t) =

(7.38)

By1,1P(vi—L,va,. . . vy, t)—(ﬁux’l—]—ayl’l)P(vl, Vo . ¥ t)+ L‘Lv1+1’1.P(V1—|—].,V2, o t)

+By1,2 P (v, ve—L,vs, . .. VM,t)——(BVZ’Z—{—aVZ’Z)P(vl,vz,. . .,VM,t){—aya_H,zP(vl;(vz—]—l,. .

.....................................................................

< Vs 1)

+BVM—1,MP(V1’- covy—l1 :t)“‘(BVM,M—’—ayM,M)P(Vqu:- . -,VM,t)“I‘a,,MH,MP(Vth,- s L)

which. is valid for all points inside the range 2, as defined by

0 v, =n t1=1,...,M
M
Z Vi
1
With simple modifications corresponding to the results obtained in the
unidimensional cases, (7.38) is valid also for the marginal points.

0

[IA
A

p- (7.39)
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If statistical equilibrium P(vy, ..., v,) ocours, we have

M (

Plyy, ..., vy) = 703 H

(7.40)

where k; is determined, using the conditional equation corresponding to
(7.9), by

(7.415

ZQZ Py, ...,vy)= 1.
- Calls from exchange 4; to exchange H will be lost when
Mo ,
v;=mn; Or Z v; = P, (7.42)
=1

the probability for this being
EAl-H = Z .o Z Py, ..., vy) + Z Z Py, ...y vy (7.43)

Qo vi ++ - Hvy=p . vi=n

where 2; denotes the range corresponding to £, that does not contain
points for which
Z Vj = p —_— ni. (7.44)
i ,

In terms of erlang, the amount of traffic handled over the stretch 4,7
is ‘ : oL
ea;r = Yi (1— EAiH): ' (7.45)
whereas

M
bar = _El e

i=

(7.46)

is the traffic handled over the group of switches HT'; it is this traffic that
is estimated by measurements.

Iv.

In the last example there was no local traffic between exchanges 7' and
H; but there may be such local traffic, and, if so, we have a special case
of IIT. An exchange A; may then be regarded as identifiable with 7', and
thus n; = p. Hence it follows that the range £; will be empty when
exchange 4; is considered, so that only the first summation in (7.43) con-
tributes to the probability of loss with respect to the traffic over TH
(= 4;H).
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V.

The examples hitherto dealt with comprise only those cases where con-
nexions can be established between a main exchange H and some other
exchanges A; over a transit exchange 7', whereas local connexions be-
tween the exchanges A4; cannot be established over the same network.
However, a perusal of the proofs will show that the demonstration itself
does not preclude such mutual connexions over the same network if only
the probability that a call will oceur in one traffic channel during a given
time At does not depend on the state of any of the other channels. Such an
extension of the problem is of consequence only to the determination of
the constant £ which depends on the range Q. An example of (M +1)
exchanges placed in the form of a star, as indicated in fig. 7.6, with at

M+1
most ( ; > interconnecting traffic channels of the type mentioned

includes the examples discussed in the foregoing.

Fig. 7.8.

Between the exchanges 4, ; and the exchanges 4, ... A u there are
junction groups of n; ... ny switches which cooperate as simple groups.
The total amount of bothway traffic offered to the channel connecting the

exchanges 4; and 4;is y,; =y, = %, where y; = 0.
diy'
The probability that there will be vy call connexions established be-
tween the exchanges 4; and 4; when the system has attained statistical
equilibrium is, for j = 1,2, ...,7— 1 and ¢ = 2, ..., M +1,
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(yy)

{+1 i—1

P =P(vy1,v31, V89 -5 Vagga1o - - -» Ve m) = k I 11 | (7.47)

: i=2 j=1 (Viy‘)-
where k is determined by : ‘

> ... > P=1 (7.48)
2
By the assumption, the range 2 is defined by
M+1

0= }"v,,gnl, i=1,2, ..., M, (7.49)

putting v; = v; and v; = 0 in order to simplify the expressions.

Calls from exchange 4;to exchange A, (where i), or vice versa, will be
lost when

M1
Dlvy=mn;, i+ M +1, (7.50)
j=1
or when
_ a1 .
Dlvy=mn; jF M1 (7.51)

=1
Calls from A; to A, ,, or vice versa, will be lost when
M+1

Dlvy=mn; i+ M+1 (7.52)
=

which means that the probability that the stretch A4;4; will be fully
occupied is

EA,.A,. =D’ o >'P + ZQ.;.QZ P, i¥FjF M1, (7.53)

where 2, comprises combinations of »; satisfying the conditions (7.49)
and (7.50), while 2, is defined by (7.49) and (7.51) so that £2, — £, compris-
es those combinations inside £, which are not combinations inside 2, as
well. '

The probability for lost calls between exchanges 4; and A, is

AAM-i-l Z‘ ZP i:]_, "-3M- (7.54:)

#

In terms of erlang, the amount of traffic handled over the channel
AA; is
ey =Yy (1 — EAiAj): (7.55)
whereas the channel 4,4, , carries the traffic
M+1

€ = 7 yly AA) (756)

7
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The total amount of traffic handled is

M+1 i—1

¢= ZZ Zl Y 1 — B 4.4)) (7.57)
=

It will be noticed that the number of connexions to be established in

Ay is, by (7.47),
M

IME

|
o

41 i1

n=3 3, (7.58)
i =

VI.

The results obtained in V are applicable to a great number of special
problems, such as the determination of the necessary number of connect-
ing devices in a purely local exchange serving the internal traffic of a
limited area only, e. ¢. a factory or a business house.

An investigation of such a private exchange plant consisting of a switch-
board (without any connexions to the public exchanges) and some ex-
tension instruments, all of which are being used to the same extent, will,
for a great number of extension instruments, furnish results approaching
those expressed in Erlang’s loss formula.

The results of V may also be used to determine the number of connect-
ing devices required for the handling of local as well as incoming and
outgoing calls in an ordinary switchboard.

They may further be used to determine, simultaneously, the necessary
number of intercommunication possibilities, local and. external in different
directions, in an exchange, and the necessary number of switches in the
groups connected to the exchange in so far as these are simple. It will
generally be reasonable to apply Moe’s principle!) to such caleulations.

VIL
The ranges of occurrence £ considered in the problems treated in this
chapter have been defined by

M1
0= > v;=my, 1=1,...,M.
=

It should be noticed that it is a neéessary and sufficient condition for the
obtained results that the range 2 is defined by

where n; and m; are positive integers or zero.

1} See page 107.
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The fact that only cases of traffic channels carrying Poisson-distributed
traffic have been treated in this chapter should not be interpreted as signi-
fying any restriction; many of the channels — or all of them — may be
carrying binomially distributed traffic, but then the Poisson factors of
the laws of distribution must be replaced with the corresponding bino-
mial terms. This will change the meaning of the derived loss formula, how-
ever, and besides make the expressions of the amounts of traffic handled
more complicated.

8. Waiting Time Investigations. — Poisson’s Distribution.

The assumption (5.1) which is natural in the case of busy signal tele-
phone systems must be modified to some extent in the case of waiting time
systems. It was assumed in Chapter 5 that the number of simultaneously
present individuals could not exceed 7, and that arrivals occurring during
periods when n individuals were already present, would be regarded as
non-existent. But in systems where arrivals occurring during such periods
are permitted to wait until a position or a connecting device becomes free,
the assumption must be modified accordingly. We shall therefore in this
chapter supplement the assumptions (3.1) and (3.2) with the following,
which corresponds to (5.1):

The number of individuals that can be observed simultaneously is n  (8.1)
at most. Arrivals occurring during periods when n individuals are al-
ready being observed are “put in a queue” and permitied to wait, in
the order of their arrival, for “empty seats™. '

The probability P(s,# | j,t,) to be found in the following expresses, for
t > m, the probability that there will be n individuals under observation
and ¢ — n waiting individuals at the time ¢.

The assumption (8.1) would not have affected our derivation of the
differential equations (3.17) for ¢ = 0 and (3.18) for 0 <<+ <<n; these
must therefore be satisfied also by the process to be considered now, but
it remains to be seen what happens for ¢ = n.

1 =n.

The following combinations will give n individuals at the time ¢ + 4¢:

Number of individuals Arrivals Departures
at time ¢: : during interval 4¢:
n—1 1 0 (8.2)
n 0 0 (8.3)

n+1 1 (84)
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(and some other combinations, for which the probabilities are asymptot-
ically equal to zero).
The probabilities corresponding to the above cases are

P(n— 1,%) A4t 1— (n— 1) A4t (8.5)
P(n, 1) (1 — A,4%) 1 —n A4t (8.6)
Pln +1,8)  (1—Adi) n AL, (8.7)

Hence it follows, as before, that
P(n, t 4 4t) = P(n — 1,t) A, 441 — (n — 1) A;4%) (8.8)
+ P(n,t) (1 — A,41) (1 —n A;41)
+ P(n 4+ 1,8) (1 — A, 4t) n 3;4¢
-+ o(4%).

1 > n.

The following combinations will give ¢ individuals at the time ¢ 4 4%:

Number of individuals Arrivals Departures
at time ¢: during interval 4¢:
i—1 1 0 (8.9)
i 0 0 (8.10)
i+ 1 0 1 (8.11)

(and some other combinations, for which the probabilities are asymptot-
ically equal to zero).
The probabilities corresponding to the above cases are

P(i — 1,) 2,4t 1—n At (8.12)
P(i,?) 1—a,4t 1—n2dt (8.13)
P + 1,1) 1— 2,4t n A At. (8.14)

Hence it follows, as before, that
P(i,t + 4¢t) = P(i — 1,8) A, 4¢(1 — n A;41) (8.15)
+ P(i,8 (1 — A, 48) (1 — n A;4%)
+ P(¢ + 1,8) (1 — A, 4t) n A, A%
—+ o(4t).
From (8.8) and. (8.15) we obtain the differential equation
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Pi(s,t) = A, Pt — 1,t) — (A,+mn Ay Pe,t)+n A P(s+1,8), 1 = n. (8.16)

The process must satisfy (8.16) and also the initial condition.
If the process attains statistic equilibrium, we have

f P(i) =1, (8.17)
i=0

for which the condition (2.24) is satisfied, as

a:«IV/\d’ v N

Tl I and B, =A,. (8.18)

: N
Besides, it is a necessary condition that >’ P(¢,t) converges uniformly
i=o
in N, which is satisfied if

A :
—2 =k<l (8.19)
nAy

The limiting distribution P(¢) is therefore determinable as the solution
of the equations (3.17), (3.18), 0 << 7 < m, (8.16) combined with (8.17) and
(3.80), if (8.19) is satisfied.

The limiting distribution will be

A1 ]
k<_>_’ ’L<’ﬂ/,
Ay el

PG) = | . (8.20)
| A 1 ,
M E(= — ., i =,
| \Ag/ ntwi—"

where k is deterﬁﬁined by (8.17).
The mean number of waiting individuals will be

a
n A,

Z (t—mn) P(i) = P(n) PR YT T (8.21)
=n 1t >
< nAg
The probability that all » “seats’ will be occupied is
PG Zm)=> Pi) = Pm) — (8.22)
.= 1— e
nA;

whereas the probability that there will be some individuals waiting is
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A{l
> . n Ay
> P(i) = P(n) — (8.23)
i=n-+1 1 ___ik
na;
The mean number of waiting individuals, if any, will be
S E—mPG)
i=n-+1 — — ——Ta (8.24)
P(i 1—
i=nz+1 © n Ay

and as the mean number of departures during the unit of time is n A,
we find the mean waiting time for the “queued-up” individuals to be

1 1 1
— = : (8.25)
A, mA; nmA;—A,

1—
n Ay

The law of distribution for the waiting time, when the number of indi-
viduals waiting in the “queue’” before the occurrence of the arrival under
consideration is unknown, is

p(t) di = (nd;— A,) e "Aaa) gy, (8.26)

if, on the other hand, the number of individuals in the “queue’ is known,
the distribution for the waiting time will be of the type given by (1.5).

When the arrivals not waiting are included, too, the mean waiting time
will be

1 x© /\
M, = —/\ ; i — n) PG) = P(n) (A——_'Aa)z’ (8.27)

1

where — is the mean holding time and A, is the mean number of arrivals
d

during the unit of time.

9. Waiting Time Investigations. — Binomial Distribution.

The waiting time problem discussed in the preceding chapter was based
upon the assumptions of the Poisson distribution, but there are other
waiting time problems which can more advantageously be based upon the
assumptions of the binomial distribution. When, in the field of telephony,
a number of connecting devices is available to a limited group of subscrib-
ers only, the problem that faces us belongs to the latter class. In this and
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like cases the assumption (8.1) will be used in connexion with the assump-
tions (4.1) and (4.2) of the binomial distribution.

The sought probability P(:,% | §,%,) — which expression is to be inter-
preted in the same manner as in the preceding chapter — must here satisfy
the differential equations (4.20) for 4 = 0 and (4.21) for 0 < ¢ < n, since
these satisfy the conditions of the binomial law, and since the assumption
(8.1) does not change the differential equatlons on this range. It must also
satisfy the differential equations:

Pi,8) = (N — i+ 1A P(i —1,8)— (N — ]+ nd) P, ) - mA, P(i 41, ),
« n=i<N, (9.1)
PUN,8) = A\, P(N — 1,8) —n A, P(N,2), (9.2)

which are derived in the same manner as (8.16), and it must furthermore
satisfy the initial condition.
If the process attains statistic equilibrium, we have

N
ST PG) =1, (9.3)
i=0

for which it is a sufficient condition that the coefficients entering into the
given differential equations are bounded.

The' limiting distribution P(7), which is determined by the equations
(4.20), (4.21), (9.1), and (9.2), in connexion with (9.3) and (3.30), will there-
fore be

@)
!| i N (94)
l ( d> nl ni—n n=i=q,

where the constant % is determined by (9.3), and N® = N(N —1) ...
(N —14 4 1).

From this distribution may be derived expressions corresponding to
those derived in the preceding chapter, (8.21) and (8.25).

The distribution for the waiting time is, as in Chapter 8, of the type in-
dicated by (1.5) for a particular “item” in the “queue”.

In this and the preceding chapter, the laws of distribution have been
derived on the assumption that all arrivals occurring during periods of
congestion will have to wait in the “queue” until they can get “seats”.
It is, however, very likely that some of those “standing in the queue” will
give up waiting, thereby giving rise to extraordinary departures. This case
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was first suggested by Conny Palm!) who supposed that the probability
for an individual’s giving up waiting after having waited some time be-
tween t and ¢ -+ 4¢is A, 4¢; the distributions derived from this contain the
waiting time distributions (8.20) and (9.4) found here, as well as the cor-
responding loss formulae (5.9) and (6.8).

10. Waiting Time Investigations. — Constant Holding T'ime.
The limiting distributions in the loss problems discussed in the fore-

1

going depend on the mean holding time ~ only, and are otherwise in-
d

dependent of the distribution of the holding time?), whereas in waiting

time problems the limiting distributions depend on the form of the law of
distribution. Besides the waiting time problems of Chapters 8 and 9 where
the distribution of the holding time is that indicated by (1.7), Erlang has
also considered a waiting time problem with constant holding time (see (1.9)).
His treatment of the problem — which was published in Matematisk Tids-
skrift B, 1920 — shall be discussed in detail in the following; but first a
couple of theorems ought to be mentioned which will be used as lemmata.

Lemma I. Jensen’s theorem?) may be written

o . Y
Z’ e—(u—‘rj:u) (a + ?x) _ 1 . lf
j=0

j! Cl—=z

Introducing into this the notations ¢ = b a,, z = a, where

2 mip
0, €% =ae %e ", p=0,1,...,n—1, (10.2)

where ¢ is the unit of imaginaries, we obtain

L (b 4 9) % ’
(e a )+ I ; (10.3)
7.;0 ? 7! l1—a,
hence, by summing over p, we get
n—1 oo (b + N op—1 a? )
2 2 (€7 a,) ( . Y 2 (10.4)
p=0 j=0 7t =0 1—0,

which by insertion of (10.2) becomes

1y . Palm (1937).
%) See e.g. C. Palm (loc. cit.).
3y J. L. W. V. Jensen (1902).



76 Arne Jensen:

b+t 2T

; e )b+} ?' Z’ e n

p=0
o b LIRS B . |
— > (e appi ¢ Jr'” = 2 (10.5)
= A S = l—a,

This sum thus contains only those terms for which b + j = nu, where
j = 0, that is to say,

i n (e o)tk M — ng_'l JL , (10.6)
— b (np — b)! =0 1—a,
so that "
T T I T~ N (10.7)
#g% (np—b)! n o’ 7=o 1—0,

where o, is determined by (10.2). Erlang has arranged in tabular form,
and represented graphically, the roots of the equation (10.2) a, ={ + i 7
for n =40 and « = 0, 0.1, 0.2, ..., 0.9, and values for » which are divi-
sors in 40, see Tables 14-15 on pp. 197-198 and Table 17 on p. 200.

Lemma II. It will appear from (1.4) that

lim P{bp=np—v}=0 (10.8)
p—>
where s
P{bp.?’n‘u.—u}.: C—0—1(’,_('”‘t_z)('u‘i—Z) (10.9)
- o=y s!
when p<pt, t=an<mn, 0=v<n. (10.10)

The waiting time problem to be considered in this chapter is based upon
the assumption (3.1) with respect to arrivals and upon the assumption
(8.1) when all “seats’ are occupied; the assumption with respect to de-
partures will be this:

Any individual will leave after having been “‘seated” for the time t. (10.11)

This assumption is thus the only deviation from the assumptions of
Chapter 8.

The sequence of points of time ¢, #y, ¢3, . . ., ¢,, at which arrivals occur
is called a sequence of calls. In the following we shall measure time ‘“back-
wards”, using as time origin 7', that particular point of t1me whose
waiting time conditions we want to investigate.
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Let the number of arrivals occurring during the time interval
p—Dt=T <pt,p=12 ..., (10.12)

be called a,, and let the number of arrivals occurring during the time
interval
0ET <pt,p=12,.... (10.13)
be called b#.
If the time to be considered especially is T',, = m ¢ instead of T';, the
sequences of calls a,,, and b, corresponding to T, can be derived from
(10.12) and (10.13):

a’m,u - a‘m-',-p,, B = 1,2,..., (1014)
mu — Ymtp T b,, p=12,..., (10.15)
where by =0, (10.16)

on which the number s of “‘seats’ vacant at the time 7, out of the possible
n ‘“‘seats’ (or connecting devices) depends.

If the individuals considered are telephone calls, we have that n &
calls, at most, can be started over n switches during a time k ¢, where
% is an integer. If at least s switches shall be disengaged. at the expiration
of the time % ¢, then (n & — s) is the maximum number of calls that may
be started during the time % ¢. In order that there may be at least s free
switches at the point of time 7', this condition must be satisfied for all
values of k, which means that

bm,u Snp—s p=12 ... (10.17)

if this condition is satisfied, there will also be at least s free switches at
the time 7',,. Now, if as many of the calls as possible are “moved” as near
to T',, as possible while (10.17) still has to be satisfied, we obtain

b,m'u-——ny.———-s, p=12.... (10.18)
Hence it follows that a,, =n—s and Uy, = M forp=1,2, ...; but
this means that there are exactly s free switches at 7', . It should be noticed
that there will be exactly s free switches at the point of time 7, if only
b, = n k — s for one value of &, and (10.17) is otherwise satisfied, and
there cannot be exactly s free switches if b,,, <n p — s for all p.

The concept of waiting time has not yet figured in these considerations.
The waiting time, if any, for a call which has arrived at the time 7', + 2
is not affected by the calls which may have arrived later (' < 7', + 2),
as the calls are put through in the order of their arrival. The condition
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that there will be at least s free switiches at the time T, available to a call
arrived at the time 7', - z, is then still expressed by (10.17), except that
new calls, if any, arriving during the time interval 7, < T < T, + 2
must be excluded from the considered sequence of calls.

It follows from the assumption (3.1) that the number of arrivals r
occurring during the time % ¢ follows Poisson’s law of distribution with
the mean kt)A, where A, is the intensity of arrivals. The probability for
r arrivals is

pl,ktd,) = (k’;’\) ki (10.19)

while the probability that there will be more than » arrivals is

Prykta) = D> plu,ktd,) (10.20)
p=r+1

The probability that (10.17) will be satisfied for u = % is then
—Pkn—s ktA). (10.21)

The limiting value of this is, in consequence of Lemma I1, equal to 1 for
k—>oo, ifkn >kt A,, which means that the amount of traffic measured
in erlang must.be less than the number n of switches. Hence it follows
that, in making up which sequences of calls satisfy (10.17) and which do
not, it is unnecessary to consider the sequences of calls for which it is true,
for arbitrarily great values of M, that

bpp >pn—s, p= M, (10.22)

since the probability for their occurrence converges to zero.
The other sequences of calls that do not satisfy (10.17) will have at least
one element which satisfies one of the conditions:

bmﬂzp,n—v—}—n, v=¢8s+1,...,8 +n—1. (10.23) -

As there, in consequence of (10.22), for each of these sequences of calls
furthermore exists a number M for which

by = pn—s, forp> M, (10.24)

it follows that each of these sequences of calls has one and only one ele-
ment b, which satisfies one of the conditions (10.23) for p = % as well as
the condition (10.24) for M = k. This means that the sequences of calls
which do not satisfy (10.17), and which it is necessary to include in our
list, may be grouped by means of the number k, so that
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by = kn—v +n, v=3y,8+1,...,sF+n—1 (10.25)
and b = p—, > k.

Each of all the above mentioned sequences of calls will be included once
and only once in the list when this method of grouping is employed.
* Another way of writing (10.25) is

b =fkn—v -+ mn, v=s8+1...,84+n—1
and b, p=0b,. i —b, =Sk +in—s—kn+v—n (10.26)
or bm+M in 4 v—s—mn, v=s8+1,...,s+n—1, J>0.

. The probability that there will be exactly s free switches at the time 7',
among the possible n switches is called p(s, n, T',,), and the probability
that there will be at least s free switches at the time 7', is called

(s,n, T,) Zp i n, T,,) (10.27)
=8
The probability that a derived sequence of calls will not result in at least
s free switches at the time 7', is, then, 1 — P(s, n, T,,). The probability -
corresponding to the sequences of calls included in the list is, according
t0 (10.26), composed of terms indicating the probability that (kn — » +n)
arrivals will occur during the time k¢ (ranging from 7T, to T, ,;), and,
simultaneously, that there will be at least n + s — v free switches at the
time 7', ;,forv=s,s41,...,8+n—land kb =1,2,....
This results in the following system of equations for the determination
of P(s,n, T,,):

s+n—1 o

1—P(s,n,T,)= D> > plln—v+n, ki) Pn+s—v,n,T,. ),
v=g k=1 .

s=1,...,n, m=...—1,0,1,2, ... (10.28)

where p(kn — v + n, kt},) is given by (10.19).

The probability that an arrival occurring at the time 7', + z will have
to wait at least the time 2z in order to find at least s free switches is called
1 — P(s,n, T,, ), which expression, as previously mentioned, is also the
probability that there will be at most s — 1 free switches at the time 77,
when arrivals occurring during the time interval (7,7, -+ z) are left
out of account. The probability of a waiting time < 2, as expressed by

P(s,n, T, 2), is accordingly determmable from
s+n—1 oo
1—P(s,n, Tpp2) = > D) p(lan—v+n (kt—z)A,) P(n+-s—v,n,T,, 1),
=8 k=1

s=1,...,m, m=...—1,01,2, ... (10.29)
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If this process can attain statistic equilibrium, the limiting distribu-
tion P(s, n, z) will be given by

s+n—1 o

1—P(s,m,2)= > > plhn—v+n, (kt—2)A,) P(n + s —»,7),
v=s k=1
s=1,...,m, (10.30)

where P(s, n) is determined by (10.28) for 7', —- oo, that is to say,

s+n—1 o
1—P(s,n) = > P+ s—v,n) > pln—v + n, kid),
y=s k=1
s=1,...,n, (10.31)
as compared with PO, n) = 1. (10.32)

(10.30) may contain terms from a Poisson distribution with negative
means, and Erlang has therefore, with a view to its practical applications,
tabulated its values on a suitable range, as shown in Table 2, p. 137 and
Table 13, pp. 195-196

It follows from Lemma I (10.7) that

n—1 g Mtv

> pllen — v +n, kX)) = —=5 > 2 for n<v=2n,  (10.33)
=1 n =0 1— a,
and that
© 1 n—l1 a;‘"‘"‘” 0
]czzlp(kn—«v—i—n, kt)\a)zm_wgol ap—p('n,——v, )

for 0 <v = n. (10.34)

By inserting this in (10.31) we obtain

o = Il 1 10.3
1 — P — , s=1,...,n .35
v;s’ (’I’L + s v, ’”/) o ;} 1 — a, ’ ( )

which may be written in the form

n—1 5 s+n—1 —ntv—s '
1= 5 — ! <G>ZPn—|—s——vn)<a> , o s=1,...,n

=0 ]. - Q, ) a y=8
(10.36)

This system of equatlons is satisfied by the solution of the following equa-
tions:

s+l a\ e n(l—a), p=0,
% _
2 P(n+s—”’”)<a> {0, p=1, ..., n—1 (10.37)
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Using the notations g, = * and Bo = 1, these equations may be written
a

< n—pu __ ’}’b(l—a) - 7920,
PZ_IP(“’”)(B”) ”_{0, p=1,...,n—1, (10.38)

the solution of which is

‘ — 1
P(u, n) :n(lﬁa)g—(n—a—(l;{l——), p=1,...,m  (10.39)
where
n—I1
()—JI_IIB——y Zlyg (10.40)
because -
n i ) 1 ip)_{ n(l—aj, p=0,
2, M= gy I D= g G T o, pet, e,
(10.41)
From (10.39) is obtained
P(1,n) =n(l — a) 71—1_;— (10.42)

v=1

which expresses the probability for no waiting time.

A more elegant solution of this waiting time problem has been given by
C. D. Crommelin in “The Post Office Electrical Engineers’ Journal”,
April 1932, p. 41. Its leading idea shall be rendered here, since it seems to
be much more in accordance with the reasoning of Erlang’s other works
than Erlang’s own solution of this particular problem is.

The probability that there will be s occupied switches among the possi-
‘ble n circuits at the time 7' is called p(s, n, T, while

P(s,n, T) = Zg p(r, n, T). (10.43)
r=0

For s > n, the state s is interpreted as n occupied switches and s — n
waiting arrivals; otherwise the usual notations are employed.

The result: s occupied switches at the time 7' = 0, is obtained if at most
n switches were occupied at the time 7' = ¢ and s arrivals have occurred
during the interval 0 = T < ¢, or if n switches were occupied and one call
was waiting at the time 7' = ¢ and s — 1 arrivals have occurred during the
interval 0 = T < ¢, &e.

6
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Hence it follows that

20(3» n, 0) = P(n’ ", t) 20('5‘: tAa) + P(n + 1, n, t) p(S—‘ 1, t)\a) -+
+ p(n 4+ s, n,t) p(0, tA,) for s =10,1,... (10.44)

If this system attains statistical equilibrium, the limiting distribution
p(s, n) can be determined from

pls, 1) = P(n, n) pls, tA,) + i pn 4, m) p(s — i, 12,), s=0,1,....
=1

(10.45)
If we use the generating function
fly) = ZO y°p(s, n), (10.46)

We. can determine {(y) by inserting (10.45) in (10.46); using (10.19) and
reducing the expressions we obtain ;

@u(y) — y" P(n, n)
fy) == D

©(10.47)

~ where Q Z Y p(s, n).

An i_nvest1ga,t10n of the roots of the denominator in (10.47) will show
that the function may be written

n—1
4 '——"n(l—-a) 'I—_‘-[() (y_lgz) ‘
1) ‘znﬁl — -~ (10.48)
(I—B)
The genel‘étiﬁg function. for P(s, m),
VEZ Pls,m), (10.49)

can be derived from f(y), as

Fly) (1 —y) = f(¥); (10.50)
from this and (10.48) it follows tha;t

Pin—tmy= "7 g
II (1—8)

t=1

which denotes the probability for no waiting time.
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In order to determine the probability of a waiting time less than z —
mé + 7, where m is an integer and + << ¢, Crommelin introduces the prob-
ability b, that at most » among a number of calls that have been established.
or are waiting at some point of time or other, will not have come to an
end 7 units of time later. Similarly, b, ,, ;, denotes the probability that
at most mm 4 n — 1 among a number of new calls (arrivals) that have
arrived before the point of time under consideration, will not have been
terminated + units of time later, i. e., there will be at most n — 1 calls
lef6 mt 4 = units of time later. This means that bymin—q denotes.the
probability for a waiting time less than m ¢ -+ =:

bumins = P(<mt 7). (10.52)

The generating function fgr b,,
y) = S} by, (10.53)

is determined by lyobse-rvihg that
P(r,m) = 270 bp(r — u,\%aa_)‘ | - (10.54)

which, in econnexion with (10.49) and (10.53), leads to the result:

F(y) = e™av=D q(yy). (10.55)
It should be noticed that V ,
. Fly) = G(y) L (10.56)
for + = 0, which means that
P(<mt) =b,,,, + =Pmm +n—1,n). (10.57)

Using these results Crommelin arrives at the following expression for
the mean waiting time M :

1 P (n—1
M== g —m—1) . (10.58)
p_ll———ﬁp 27 a(l — a)

the unit of time being equal to the holding time.

Erlang published, in the same form, his results concerning the mean
waiting time in the ‘special cases of n = 1, 2, and 3; he had, however, al-
ready at that time made some notes containing the general. formula
(10.58) which he had worked out in collaboration with H. CI. Nybolle.
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11. Combined Waiting Time and Loss Problems.

Whereas the truncated distributions and waiting time distributions
mentioned in the preceding chapters are applicable only to those problems
where “new” calls, finding all switches occupied, are either lost or “put
in a queue”, there are other problems where such calls normally are “‘put
in a queue”, but may be lost under certain conditions. The older types of
manual telephone exchanges provide an example of the latter kind; in
such exchanges, groups of n operators would be cooperating when handling
the-calls so that calls coming to the group while all n operators were busy
were allowed to wait for an operator to be disengaged if not m previously
arrived calls were waiting already; if this was the case, the new calls would
be referred. to some other group with a disengaged operator. In manual ex-
changes of newer type with automatic distribution of calls each group
consists of 1 operator, and new calls will be “lost” if m previously arrived
calls are waiting already, regardless of whether there are disengaged
operators or not. There are other systems, again, where new calls are
permitted to wait in an operator’s position only when, say, N —1 of the
total number N of operators are busy working calls, but will be lost if
m previously arrived calls are waiting in that position already.

Erlang took the first two of these examples up for treatment; he worked
out his solution of the problems on the assumption that there is a large
number of groups and, that the holding time follows the distribution stated
in (1.7).

In the case of the waiting time problem contained in the first mentioned
example where surplus calls are referred to a disengaged operator, an
arrival may occur in two ways: it may be a new call, or it may be a call
transferred from some other group. The new calls are supposed to comply
with the assumption (3.1); as to the transferred calls, we have:

The probability for the occurrence of a transferred call s asymptot- (11.1)
scally proportional to the length of the time interval under consider-
ation and to the number of free positions (operators) in the growp.

The factor of proportionality is called A, and the departures caused by
the termination of calls follow the assumption (3.2) without any modifica-
tions. '

These assumptions must be supplemented with the assumption (8.1) for
the waiting time and the assumption (5.1) respecting loss, n being replaced
by n + m in the latter. _

In order to determine P(s,t | §,t,), which denotes the probability that

* there will be altogether 4 individuals under observation — or waiting — in
a group at the time ¢ when there were j individuals at the time ¢, previous
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to ¢, we consider as usual the time interval (y,¢ + 4¢) and make a limit
passage.

The derivation of the necessary differential equations is, as before, to a
certain extent dependent on the magnitude of the number of individuals.

1 =0.

The following combinations will result in 0 individuals at the time ¢ 4 4.

Number of individuals New calls Transferred calls Terminated calls
ab time £: during time interval 4z:
0 0 0 0 (11.2)
1 0 0 1 (11.3)

(and some other combinations, for which the probabilities are asymptot-
ically equal to zero).

The probabilities corresponding to the above cases are

P(0, t) (1—Adt) (1 —n ), A 1 (11.4)
P(1, %) (1—2d8) (1 —(m—1)A, 4t) MAt,  (11.5)

whence it follows that

P(0, ¢ + At) = P(0,t) (1 — M, A2) (1 —n A, A1) (11.6)
+ P(1,8) (1 — A At) (1 — (n — 1) A, A8) N, 4t
1 o(dt).
0 <7 <<n. .

The following combinations will result in ¢ individuals at the time ¢ -+ 4¢:

Number of individuals New calls Transferred calls Terminated calls
at time ¢: during time interval 4s:
i—1 1 0 0 (11.7)
i—1 0 1 0o (11.8)
i 0 0 0 (11.9)
P41 0 0 1 (11.10)

(and some other combinations, for which the probabilities are asymptot-
ically equal to zero).

The probabilities corresponding to the above cases are
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P(i — 1,t) MAt 1—(n—i 4+ 1) X, 4t 1 — (i —1) ,4¢  (11.11)
PG —1,8) 1—2At (n—i+ 1) Ay 4t 1 — (G —1) 348 (11.12)
P(i,t) 1— 2,4t 1 — (n—1) A, 4t 1—iA 4t (11.13)
PG+ 1,8) 1—a4t 1 —(n—i— 1) A, At (G 4 1) 3,4t (11.14)
whence it follows that

P, t+4t) =P (i—1, 1)\ At(1—(n—i - 1)A, 4t) (1—(i—1)A,4¢) (11.15)

P (i—1,8)(1—A A8) (m—i 4+ 1), At(1—(i—1)A,4t)
1 P(i, 1) (1— A At) (1—(n—i)A,, Ab)(1—iA A1)
+P(i+1,8)(1—A,4t)(1—(n—i—1)A,4t) (1 4-1)A,41
—+o(4t).

1 =n.

The following combinations will result in » individuals at the time {--4¢:

Number of individuals New calls Transferred calls Terminated calls
at time ¢: : : during time interval 4¢:
n—1 1 0 0 (11.16)
n—1 0 1 0 (11.17)
n 0 0 0 (11.18)
n 41 0 0 1 (11.19)

(and some other combinations, for which the probabilities are asymptot-
ically equal to zero). -

The probabilities corresponding to the above cases are

P —1,9) MAE 1 XAt 1—(n—1) At (11.20)
Pln—1,) 1—AA4t AAt  1—(n—1) N4t (11.21)
P(n, 1) 1 — A4t 1 1—nadi (11.22)
P +1,8) 1—Adt 1 n At (11.23)

whence it follows that

P(n,t + A1) = Pl — 1,8) AHL — Ay A1) (1 — (n — 1) 4, A8)  (11.24)
4 P(n—1,8) (1 — A At) Ay At (1 — (n— 1) 3, 4%)
1 P(n,8) (1 — A 48) (1 —n A, A1)
+ P(n + 1,8) (1 — A, 4t) n 2418
+ o(dt). -
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n<t<<mn -+ m.

The assumptions employed in this case agree with the assumptions in
Chapter 8 leading to the differential equations (8.16) for n <4 << m.

5, =mn + m.

This case corresponds to that treated in (5.2)—(5.6), except that the
number of individuals # is here replaced by n - m and the probabilities
for terminated calls are (1 — n A;4t). We obtain the following expression
corresponding to (5.6):

P(n 4 m,t + At) = P(n + m — 1,8) A, 441 — n A;41) (11.25)
+ P(n + m,t) (1 — n 3;47)
+ o(4%).

P(i,t) must thus satisfy the following system of differential equations
derived from (11.6), (11.15), (11.24), (11.25), and (8.16):

PI0,8) — — (0, - 1 Ay) P(0,8) + \P(L1) | (11.26)

PLit) — (4 (10— i £ 1) 20) P — L) — O + (0 —i) Ay (11.27)

LN PEH G ) NPG LY, 0<i<m,

Pi(n,t) = (A, " A,) P(n—1;8)— (A, +ndy) P(n,t)+-ndy P(n + 1,1) - (11.28)

Pi(i,8) = \P(i — 1,8) — (A, + m &) P(5,1) - n PG + L,2), (11.29)
| n < 7 < n-+m,

Pi(n + m,t) = A, P(n + m — 1,t) — n A P(n + m,t), (11.30)

;nd the.initial condition. | -

{ If the considered process attains statistic equilibrium we have

n+m

>TPi) =1, L (11.31)
=0

so that the limiting distribution P(¢) can be determined as the solution of
the equations (11.26)—(11.31) in connexion with (3.30). This system of
equations has one and only one solution, viz.,
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i—1 /) Ay
O (+e—7)
k ; , 1=,
P(i) = ¢! (11.32)
A t—n )
(n)< ) ) n<i=mn-+m,
nA

where % is determined by (11.31).

P(n + m) is of special importance as it indicates the probability that
a call arriving in the group will be lost or transferred.

If all the groups of an exchange enter into statistic equilibrium, the
number of lost “new’” calls will be equal to the number of incoming trans-
ferred calls, or

A
Pn 4+ m) A, = A, ( — }ﬁ>, (11.83)
a
which in connexion with (11.32) serves to determine A, .
The waiting time distribution can be derived from (11.32), using (1.3).
. The probability that a call arriving while the state ¢ is prevailing will
have to wait more than the time z is thus

i—n (zn A
P(>z i) = ¢ ™ Z ( ) , 1=, (11.34)

whereas the probability for a waiting time > z for any call is

n+m—1

P(>z)—ZP ) P(> 2 4), (11.35)

In the two cases the mean waiting time will be

. ® e . P —mn + 1 .
M(@):‘ § P(/ZI’I;)I—n—Ad_, 2 ;’72’, (11.36)
[es] n+m—1
M = P(>2) = > MG PG (11.37)
0 i=n )

A :
Ifi—“ < m, we have for m — oo, which means that no calls are lost in
d
or transferred from the group, that

o in zn/\d

P(>z2) = > P@G) e >

=0 y=0
which, combined with, (11.32), leads to

P =, (11.38)
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1

P(> 2) = P(n) ——— ¢, (11.39)
1 ﬁ g
nA;
while the mean waiting time will be
P(n) 1 '
M= . (11.40)

n A <1_ A >2
n A

Tt follows from (11.38) that lim A, = 0 so that (11.39) and (11.40) agree
. IH—> 00
with the results found in the case of the pure waiting time problems (8.26)

and (8.27).

In the case of the second example where surplus calls are not transferred
to a free position, the results will be somewhat simpler since it is no longer
necessary to distinguish between “new calls” and “transferred calls”.

The assumption can therefore be expressed by (3.1) for new calls, A,
being replaced by A, + A, ; by (3.2) for terminated calls; by (8.1) for the
origination of the waiting time; and by (5.1) for lost calls, # being replaced
by n -+ m. The stochastic process P(z,? | §,4,), must thus satisfy the differ-
ential equations (3.17) for ¢ = 0; (3.18) for 0 <1 < n; (8.16) forn = 7 <
n -+ m; and (11.30) for ¢ = n 4 m, A, being everywhere replaced by A,
A, ; and the initial condition.

If the process attains statistic equilibrium we have

n+m .

S'P@) = 1. (11.41)
t =0

The limiting distribution P(¢), which is determined by the above men-
tioned differential equations in connexion with (11.41) and (3.30), will be

)
b, — )td , 04 <,
P(i) = v (11.42)
A A, t—n
P(n)(“—i—“) , n<t=mn-+m,
N Aq

where k, is determined by (11.41).

In order that all groups of an exchange may enter into statistic equilib-
rium, the handled amount of traffic per group must be equal to the arriv-
ing amount of traffic, that is to say,
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n n-Hm )\
> iP@E) +n > Pi /\— (11.43)
=0 —n+1
or
A Ay ke A
. T a n :l, (11.44)
/\d 'Icn—l Ad

from which A, can be found.
For n = 1 we obtain

. i (Aa—i—Aa')i
Ao, A~ A )
« T b d =2, (11.45)

’\d ml ()‘a + >‘a'>i N Ad
A

i=o

The waiting time distribution does not differ from that of our first ex-

ample. The results of (11.34)—(11.40) can be used immediately in connex-
ion with (11.42), only that A, must be replaced by A, -+ A,..

12. Loss and Waiting Time Distributions When the Holding Time Follows
More Qeneral Distributions.

In some of the waiting t‘in;le‘ distributions that Erlang investigated, the
holding time follows the distribution (1.7). A few results based upon the
distribution system (1.15) shall be mentioned in the following.

The Polynomial Process.

The deduction of the binomial process is based upon the one-individual
process indicating the probability that the individual will be under observa-
tion when the duration of the stay (the holding time) follows the distribu-
‘tion system (1.15) for f = 1; if, on the other hand, the holding time follows
the general distribution system (1.15), a more general process may be de-
duced, known as the polynomial process.

First we investigate the probability that a call will be in progress and
the state ¢ will be prevailing at the time ¢, where the state ¢ means that the
call will not be terminated until ¢ events have occurred, while the state 0
means that there is no call in progress. The intensities of transition from
one state, ¢, to the next state, s — 1, are called A, for ¢ > 0. The intensity
of transition from the state 0 to the state f is called A,. The polyno-
mial process for one individual as given by the conditional probability

P(i,t | §,t,) can therefore be determined in the usual manner by the initial
condition in connexion Wlth the followmg system. of differential equations:

Pi(t,te) = AP(tt,), (12.1)
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where
— A O ... 0 0
0 —A;, Ay... O 0
4= 0 0 —r... O 0, A (12.2)
0 0 0 ...—A 4 A
Ay 0 0 ... 0 —X

The polynomial process can be deduced from this process by the same
reasoning as that forming the basis of the deduction of the binomial pro-
cess for f = 1. The ].umtmg distribution P(vo, vy, ..., ;) for the polyno-

mial process, where Z v, = N, will be

- - N 1>w 1>vl 1 ’(‘12 3
LYo P e _Vo!vll..._vf1<)\0 <Al <)T> <‘— 1>N ‘
| 25,

f
which indicates the probability for v, vy, ..., »; calls in the states 0, 1,
., {- The distribution (12.3) shows inter alia that the probability for v
free switches among N switches is independent of the distribution of the
holding time since it is of no importance whether the holding time is
distributed in one or the other of the distributions comprised in the system
(1.15), if only

1 1 1
= d —4— —_— 12.4
—y o et =g (124)
which means that the limiting distribution of the number of free switches
among altogether N switches depends exclusively on the amount of traffic
handled over the group of switches concerned.

Waiting Time Distribution, One Switch.

We will consider a case where we have one switch in a tslephone ex-
change with waiting time arrangement. When we say that the state 4 is
prevailing at the arrival of a call, it means that ¢ events must occur in a
certain order before the call is given access to the switch; thus, when
i = sf + » there will be s previously arrived calls waiting, and the call
that is in progress will not be terminated until » events have occurred.
The probability that the state ¢ will be prevailing at the arrival of a call
at the time ¢, when the state j was prevailing at the time £, previous to ¢,
is denoted by P(i,t | §,%,) and determined by a system of differential equa-
tions having the matrix

A={a;} - (12.5)
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where
a — v=1, ...,
fs+v—1, fs-+v v s = 0, 1, el
@o, 0 = — A,
Cpsyiste = —A— A, : ; (l}j 1, v ]f:
@iy = Ay, 7 =0,1, ...,

while all other elements are zero.

In the case treated by Erlang we have A, = A, and A, = f}, for v =
1, ..., f, which means that the limiting distribution P(s) for statistic equi-
librium must satisfy the difference equations

P+ 1) =qP@E) +Pe—1)+---+Pe—f+1), i=f (12.6a)
and

P@ +1) = q(P) + P(i—1) + - -+ + P(0)), 0=4i</f (12.6b)

an :7 a, and o indicates the amount of traffic offered to
q

the switch which, in this case, is equal to the amount of traffic handled
over the switch.

The solutions of the difference equationsv (12.6a) may be written

where ¢ =

P@) =y + -+ 4 cpd (12.7)
where 7y, 1y, .. ., 7; are the f different roots of the polynomial
g 2 e 1) =0 (12.8)

As P(0) = 1 — a, it follows from (12.6b) that

P(i)zii1 Pt ¢THFP0) =g¢(l—a) 1+ ¢, 1=i=f—1
©n=0 I (
: 12.9)

The arbitrary constants ¢, ..., ¢, in (12.7) are therefore given such
values that (12.7) will also satisfy the other difference equations (12.6b);
this means that

I 1 1 ... ¢ l P(0)
reoore Ty e | _ ) PG) (12.10)
lrg—l SPORR el I P B B

which has one and only one solution, as r, F 7, for p + v
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The probability P(> ¢,f) that a call will have to wait more than the
time ¢ will then, by (12.7) and (1.4), be

P(>t,f) = > P(i) P(> t,1) (12.11)
=1
o= @ y—
= [ - e Y
> P § Ydy
i=1 g (3 —1)!
co i
= { dy ¢, 7, 1Y
fAgt y=1
L cr '
= N VP D
= l—r,
The mean waiting time M will be
M= P>t dt— SO | (12.12)
0 ’ fAag =1 (1—r,)2 -
which may be written
M ———1 S 2 19’13
e e
using (12.8) and (12.10) we find that
' f4+1 o« 1

M= (12.14)

2f l—a ’\—d

Letting f —- co we obtain the result found in (10.58) for n = 1.

13. Statistic Equilibrium. — Brgodic Theory.

Most of the results obtained in the foregoing by application of the prin-
ciple of statistic equilibrium can be recapitulated in a more general form;
a recapitulation, especially of the processes where the holding time (the
stay) follows the distribution (1.7), is given below. These processes satisfy
the following assumptions:

- The probability that an arrival will occur during a given time inter- (13.1)
val when v individuals are present at the origination of the interval is
asymplotically proportional to the length of the interval, with o factor
of proportionality ﬁyyl'that 18 independent of time; v =0,1,2, ..
N — 1

o
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The probability that o departure will occur during a given time (13.2)
interval when v individuals are present ot the origination of the inter- :
val is asymptotically proporiional to the length of the interval, with
@ factor of proportionality o, that is independent of time; v = 1,
2,...,N.

In (13.1) and (13.2) N may be finite or infinite.

In order to determine the process P(i,t | §,%,), we investigate the value
of the process at the time ¢ 4 4¢ using the combinations of numbers of
individuals present at the time ¢ and numbers of arrivals and departures
occurring during the time interval 4¢ that result in the presence of 4 in-
dividuals at the time ¢ 4 4¢. After a limit passage the following differential
equation is obtained:

Pi(4,8)=B;—1,1 P(1—1,8)—(B; 1+ ;) P(3,1) o, , P(i+1,7), O =i<N, (13.3)

where f_; ; = ay = By 1 = ayq = 0.
The process must further satisfy the condition

1, =i
0, i

Using the matrix notation mentioned in Chapter 4, we may write (13.3)
and. (13.4) in the form

P(i,ty | 5,%) :{ (13.4)

Py(t,t,) = AP(,t,) (13.5)
Pty t)) = E (13.6)
where the elements of the matrix 4 = {a,,} are
Gy g 1= @y, v=1L2,...,N ,
4, =—(B,1+a) v=01,2 .. N (13.7)
Byi1,v= By,1 v=0,1,2...,N—1

and all other elements are zero. NV can be finite as well as infinite.

- Amatrix 4, im :{dw} may, e. g., be composed. of the following 4
maftrices:
w=1,...,n,
A = {0}, v =1,...,m, (13.8)
_ 1 w = ]., ey Ny
Anm _{ap,y)'7 v :n+1,...,%+m, (13.9)
w=n-+1,...,n+m,
Ay ={a,} =1, ; (18.10)
=n-+1...,n+m, (13'11‘-)

Ammz{“ﬁv}’ y=n+1,..~,n+m5
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written .
4,, 4, o
An+m,;n+m_ = { A A l (13.12)

mne [

This means, obviously, that the original matrix has been divided into 4
parts by a vertical and a horizontal line. This partition may be continued.

If the matrix 4 by some arbitrary numbering of the states can be divid-
ed so that all elements of the 2 matrices 4,,, and 4,, are zero and the
elements of the other 2 matrices are different from zero, then the states
L, ..., n+m are “absolutely divisible in tsolated groups” (Class I), using
the terminology of v. Mises?). ; ,

If only one of the matrices 4,,, and 4,,, can become a zero matrix by
partition, the other 3 matrices having elements different from zero, then the
states 1, ..., n are called a group without any probabilities for departure,
or without any probabilities for arrival, respectively (Class II).

If it is not possible to perform a partition turning one of the matrices
into a zero matrix, then the states 1, ..., n + m are “absolutely indivisi-
ble” (Class III).

The processes given by (13.5) belong in Class I if e.g. there exist pairs
of elements a,, , =B, = 0; in Class II, if some elements a,= 0 and all
B, F 0, or if some elements B, = 0 and all elements a, % 0; and in Class
I11, if all elements a, = 0 and B, & 0.

Such stochastic processes as may enter into statistic equilibrium. are
especially interesting.

The concept of statistic equilibrium is an extension of the so-called
ergodic principle which was developed in connexion with the application
of statistics to physical problems. Boltzmann and Mazwell tried to solve
some such problems by introducing the ergodic principle.?)

Kolmogoroff gives the following definition?):

A stochastically definite process is said to follow the ergodic principle
(enter into statistic equilibrium) when

Lim [P (E,t]],¢) — P (B, t|k, to)] =0 (13.13)
>0 :
is valid for arbitrary values of £, j, k, and E, where E denotes a group
of possible states.

- If the matrix 4 is constant and the stochastic process, accordingly,

is homogeneous with respect to time, this can obviously be written :—

1) Ricard v. Mises (1931)
#) A detailed account of these problenis is given by B. & T, Ehrenfest (1909)
3) Kolmogoroff (1931).
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A stochastically definite process can enter into statistic equilibrium
when

im [P (B, o |j,0) — P (B, 0|k, 0)] =0 (13.14)

T —>

is valid for arbitrary values of §, k, and E.

voms G B

class I

©

=)
;

®
;

©

g, class |

fy class I

a b, and ¢ only one group without departures (rank=N)
d; ¢ and f, two groups without departures (rank <N)

Fig. 13.1.

(13.14) will, for processes with a finite number of states (N < o0),
be satisfied if the rank of the matrix 4 is N. The question of whether a
process is of the rank N can be settled, in concrete problems, by means
of a simple drawing in which the possible states are numbered 0, 1, 2, ...,
N, and the possible direct jumps from state to state are indicated by
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arrows, as shown in fig. 13.1 where jumps to “higher” and “lower”’ states
are represented by downward and upward arcs, respectively.

It will appear directly from this whether the chain of states is continuous
or divided into two or more mutually independent parts. If there are two
or more groups of states without possibility of departures, the rank will
be less than N ; otherwise it will be equal to V. In the case of the processes
determined by (13.5) and (13.6) this can be expressed as follows?):

In order that a process (13.5) with a limited number of states may enter
into statistic equilibrium, it is a necessary and sufficient condition that
there be no such set of numbers (j, %) that

B=ay =0, <k (13.15)

The states 0, 1, 2, ..., N can be divided into a series of groups S, ... S,
in such a way tha,t the states within any one group directly or indirectly
are mutually connected. Let S; and S, be two groups without possibility
of departures, and let ¢ and j belong to 8, and & to S,; we then have

P (k,t|j,%)=0, whereas lim P (i, |7, t,) is positive. (13.15) is thus a
{—> oo

necessary condition; but it is also sufficient since there is, for any group
S without possibility of departures, a single characteristic root r = 0
in the secular equation corresponding to A4, whereas the real part of the
cther roots is negative?).

The limiting d1str1but10ns for these processes are determined by the
equations

0=4P  (13.16)
where
P(0)
P= :
P(N)
and
N
D' PE) = 1. . (18.17)
i=0
Hence it follows that
W 130/31"',35_1 . :
P()=pPO) =2 0= ;1,2 ..., N, (13.18)
ayayca

where P (0) is determined by (13.17). This distribution comprises all

those processes treated in the foregoing that have a finite number of

states (I -+ 1) and where the holding time follows the distribution (1.7).

1) I am extremely grateful to Prof. @. Hifving for valuable information about this proof,
A.J.

%) Romanovsky (1909). v. Mises (1931). B. Hostinsky (1931).  Alexander Rajchman
(1930).

7
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If the above-mentioned processes with an infinite number of states
are to be able to enter into statistic equilibrium, it is furthermore neces-
sary that P(E,t|j,t,) be uniformly convergent in & for ¢ — oo, and
that

' > P(i,t | j,t) = 1, (13.19)
K]

while it is a sufficient condition that
a, + B, <lkyv, v=12,...

If P(E,t|4,t,) converges uniformly in ¥ for £ —- oo and (13.19) is satisfied,
we have
lim P (3, ¢ | 4, ty) = P (4) (13.20)
{—> 0o
and

where P (3) is determined by (13.18) for IV infinite. "
Tt is thus a necessary condition for statistic equilibrium in the case of
the processes here treated that

S, => BoB Bt . “(13.21)
i=1 ayoy " a;

converges for n —- oo.
(18.21) will always be satisfied if

Pt by<1 for »>M. (13.22)

&y

Thus, (13.18) contains all the problems treated by Erlang where the
distribution of the holding time is (1.7); it is also valid without this restric-
tion in the case of the so-called loss problems?).

- In Chapter 12 we investigated a process whose matrix 4 = { a; } had
the elements

aj'—l,i :a,j, j:l,2,...,N,
G =B, =01, ...,N, (13.23)
Bips = By j=01....N—1,

all other elements being zero, and with N finite as well as infinite.

For N finite, this process will — like those mentioned above — enter
into statistic equilibrium when its states cannot be divided into two
groups without possibility of departures and the elements are bounded.

1) See Chapter 10.
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In the waiting time process with an unlimited number of states, treated
by Erlang, the process P (E,t|7,t,) will not converge uniformly in E
for £ — co unless

LA (13.24)
fa o f .

which means that the amount of traffic handled over the circuit must be
less than 1 erlang.

The mean value (with respect to time) of the stochastic processes con-
sidered here is especially significant for their applications.

If

1 tﬁ:T
Mty + T, bo) = 7 ) PG, 14, to) dt, (13.25)
. £
we have
to-(—.,’l'
M (i, t0+T | g, to) — P(3) =7 t.\ (P (3,817, tg) — P (z)) dt
1 1(e) 1 ttT

=7 § (P @,tly, to)—P(”:))dt”f“F (P, ¢4, t)) — P (i))dt; (13.26)
to t(e)

if P(i,1]7,1t,) converges uniformly in ¢ and j, there will exist a ¢ (e)
corresponding to e for which it is valid, for all 4 and j, that

| P @t t) =P @A) <e for ¢=¢(e), (13.27)

which means that

t(e) —1t 1
|M(’b¥to+T17',4to)—P(i)|g_(L_ﬂJr?

T (b + T — 1 (e)) e. (13.28)

Hence it follows that there, for any e,, exists a 7' (e;) such that
| M (i, ty + T |5, t)) — P i) <e for T=T(e) (13.29)
for all 7 and 4, which means that

lim M, ty + T | 4, t,) = P(i) (13.30)
T—> o

when the stochastic process concerned can enter into statistic equilibrium.
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A SURVEY OF A. K. ERLANG’S MATHEMATICAL WORKS

By E. BROCKMEYER.

A. Works Concerning the Theory of Probability.

The greatest, and by far the most important, part of Erlang’s produec-
tilon comprises his works concerning the application of the theory of prob-
ability to problems of telephone traffic. The investigation of these prob-
lems constituted an essential part of his activities throughout the 20 years
he spent as a scientific collaborator of the Copenhagen Telephone Company.

Characteristic of Erlang’s achievements within this field are his endeav-
ours to deduce as much as possible from a single basic principle. In
the case of these problems he found this basic principle in the assumption
of statistic equilibrium, a concept which was known, it is true, from other
domains; it was Erlang’s works, however, that disclosed the wealth of
possibilities contained in this principle with regard to the theory of tele-
phone traffic. The mathematically exact methods of solving problems of
loss and waiting times, which Erlang developed by his employment of
the principle of statistic equilibrium, are of fundamental importance in
the theory of telephone traffic.

On his results within this domain, Erlang has published the works
mentioned below under Nos. 1—5). As most of the contents of these pub-
lications are treated in detail in Arne Jensen’s paper ©An Elucidation
of Erlang’s Statistical Works Through the Theory of Stochastic Processes”
(p- 23), a brief survey will suffice here:

1. The Theory of Probabilities and Telephone Conversations, p. 131.

First published in Danish:

Sandsynlighedsregning og Telefonsamtaler.

Nyt Tidsskrift for Matematik B, vol. 20, 1909, p. 33.
Later published in French:

Calcul des probabilités et conversations téléphoniques.
Revue général de I'Electricité, vol. 18, 1925, p. 305.

') The numbers prefixed in this survey to the titles of Erlang’s reprinted works correspond
to the numbers of the reprints in the present book, to which also the suffixed page numbers
have reference.
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In this, his first published work on the theory of telephone traffic,
Erlang proves in Section 1 that the number of calls originating during a
given time interval, assuming random origination of the calls, follows
the Poisson law of distribution. Some properties of this law of distribution
are mentioned in Section 2. Section 3 deals with the simplest case of the
problems of waiting time for calls into a group of circuits when the hold-
ing times are constant, viz. the case where the group consists of one
circuit only. The problem is here formulated so as to concern calls to
an operator serving a manual position. In the original Danish edition
Erlang then gave a brief treatment, in Section 4, of the corresponding
problem for a group consisting of several circuits, so formulated as to
concern a distribution system with a group of cooperating operators.
An error had slipped into the treatment of this problem, however, and
as the problem had been given a new and better treatment in the work
from 1917 mentioned below as No. 2, Erlang omitted this section in the
French edition from 1925 and inserted instead a new Section 4 containing
some supplementary remarks and tables to Section 3. The present re-
print conforms to the French edition.

2. Solution of some Problems in the Theory of Probabilities of Significance
in Automatic Telephone Exchanges, p. 138.
First published in Danish:

Losning af nogle Problemer fra Sandsynlighedsregningen af Betydning

for de automatiske Telefoncentraler.

Elektroteknikeren, vol. 13, 1917, p. 5.

Also published in English, the numerical tables not included, under
- the above-cited title in The Post Office Electrical Engineers’ Journal,

vol. 10, 1918, p. 189.

Furthermore published in German and French:

Lésung einiger Probleme der Wahrscheinlichkeitsrechnung von Bedeu-

tung fir die selbsttitigen Fernsprechdmier. k

Elektrotechnische Zeitschrift (E.T. Z.), vol. 39, 1918, p. 504.

Solutions de quelques problémes de la théorie des probabilités présentant

de Pimportance pour lex bureaux téléphoniques automatiques.

Annales des Postes, Télégraphes et Téléphones, vol. 11,1922, pag. 800.

This work must be regarded as Erlang’s most important publication.
In Section 1—7, the loss problem for a simple group of circuits is dealt
with on the basis of the principle of statistic equilibrium, and Erlang
here sets forth and proves his famous B-formula for the loss which is
of fundamental significance to the theory of telephone traffic. It should
be noted, however, that the proof which Erlang gives in Sections 2—5,
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is correct only in the case of exponential distribution of the holding
times (which presupposition Erlang mentions in Section 6), but not in
the case of constant holding times. (For further information, see pp.-33-
38). In connexion with the B-formula are given two tables of numerical
values, of which Table 1 indicates the loss, B, for fixed values of the
number of circuits, x, and the traffic intensity, y, whereas Table 2 indicates
the traffic intensity, y, corresponding to fixed values of the number of
circuits, z, and the loss, B1). Besides, Erlang’s interconnexion formula
(later published in the work mentioned below under No. 4) is briefly
mentioned in Section 7, and some numerical values to this formula are
given in Table 3.

Section 8 deals with the waiting time problem for calls originated to a
group of circuits when the holding times are constant, i. e. the general
case of the problem, the simplest case of which, viz. that of only one cir-
cuit, was treated by Erlang in his work referred to as No. 1 in the above.
A collocation of the formulae for 1, 2, and 3 circuits, with appurtenant
numerical tables (Tables 4—6) is given, but Erlang does not prove these
formulae here. The later published work, referred to as No. 3 below, con-
tains a more detailed exposition of this problem.

Section 9 deals with the waiting time problem for calls originated to a
group of circuits when the holding times are distributed exponentially.
The exposition is very brief, and Erlang sets forth, without proofs, the
general formulae for the solution of this problem, valid for any number
of circuits; corresponding numerical values are given in Table 7. These
formulae are just as fundamentally significant to the theory of waiting
time as the B-formula is to the theory of loss.

In Section 10, some approximative formulae are mentioned, including
an approximative formula expressing the loss by means of the Poisson
series, with numerical values given in Table 8. Finally, some supplementary
remarks are made in Sections 11—12.

3. Telephone Wasting Times, p. 156. '

First published in Danish:

Telefon-Ventetider. Et Stykke Sandsynlighedsregning.
Matematisk Tidsskrift B, vol. 31, 1920, p. 25.
Later published in French.:

Calcul des probabilités et conversations téléphoniques.
Revue générale de I’Electiicité, vol. 20, 1926, p. 270.

1) The reader will find a more comprehensive table, corresponding to Erlang’s Table 2, on
page 268. A detailed six-figure table corresponding to Erlang’s Table 1 has also been comput-
ed; it is not included in the present book, however, as a similar table has recently been.
published by Conny Palm in “Tables of Telephone Traffic Formulae’ Nr. 1, Stockholm,1947.



104 ‘ E. Brockmeyer:

This paper'is Erlang’s principal work on waiting times, assuming
constant holding times. While Erlang in No. 2 above only stated the re-
sults for 1, 2, and 3 circuits without proofs, he treats the problem thoroughly
here. Erlang illustrates his method of finding a general solution of the
problem by deducing in full the formulae for 1 and 2 circuits, in Sections
2—6 and 7—11, respectively. This work is one of the least perspicuous
of Erlang’s papers, however, owing to his peculiar mode of expression.
A more easily comprehensible treatment of the problem has later been
published by C. D. Crommelin') who has given Erlang’s solution a mathe-
matically more elegant form.

4. On the Application of the T'heory of Probabilities in Telephone Adminis-
tration, p. 172.

First published in Danish:

Sandsynlighedsregningens Anvendelse i Telefondrift.

Forste nordiske Elektroteknikermgde i Kebenhavn 1920 (H. C. Grsted-
mgdet), Copenhagen, 1922, p. 149; reprinted in: Elektroteknikeren,
vol. 19, 1923, p. 99.

Later published in French:

Application du calcul des probabilités en téléphonie.

Annales des Postes, Télégraphes et Téléphones, vol. 14, 1925, p. 617.

This work forms the basis of a lecture read by Erlang before the First
Scandinavian Congress of Electrotechnicians in Copenhagen, 1920; it
contains, partly, a survey — without proofs — of Erlang’s earlier results
from the publications mentioned under Nos. 1—3, and partly, a statement
of some new results, also without proofs.

After an introduction containing some historical remarks, the Poisson
distribution of calls is mentioned in Section 2a. Section 2b deals with vari-
ous hypotheses for the holding time, and Table 1 shows the results of
a statistic of holding times, made at the Main Exchange of Copenhagen
in 1916, indicating that the holding time follows, with sufficient approx-
imation, the law of exponential distribution. The B-Formula of loss is
mentioned in Section 3a, and the results of some artificial traffic records
are, in this connexion, shown in Table 4.

In Sections 3b and 3¢ Erlang states his solution of two new problems,
viz., in Section 3b, the loss problem in the case of binomial distribution
of the calls, the resulting formulae being compiled in Table 3, and, in
Section 3¢, the loss problem in the case of systems with ‘‘grading and inter-

1) Q. D. Crommelin: Delay Probability Formulae when the Holding Times are Constant.
Post Office Electrical Engineers Journal, vol. 25, April 1932, p. 41, and vol. 26, January,
1934, p. 266.
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connecting’; BErlang’s interconnexion-formula is given in Table 3 with
appurtenant numerical values in Table 5. Since Erlang has not given any
proof of this important formula, and since it is not mentioned in Arne
Jensen’s paper, I give a proof of it in Appendix 1, p. 113.

In Section 4a the problem of waiting time when the holding times
are constant is dealt with; Table 6 is a collocation of the formulae for
1, 2, and 3 circuits, with curves of the corresponding numerical values
given in Tables 7—9. More curves and numerical tables for the waiting
time theory for constant holding times are given in Tables 13—17. The
latter tables are not to be found in the Danish edition, but are added in
the French translation. In Section 4b the waiting time problem for
exponentially distributed holding times is briefly mentioned, and in Sec-
tion 4¢ with Table 10 various other hypotheses for the distribution of
the holding times. -

In Section 5a, a comparison of busy-signal systems and waiting-time
systems is made; and the theory of waiting time in manual positions,
assuming operators’ team work or automatic distribution of calls, respec-
tively, is treated in Sections 5b and 5c¢, with appurtenant collections
of formulae in Tables 11 and 12.

5. Some Applications of the Method of Statistical Equilibrium in the Theory
of Probabilities, p. 201.

Den sjette skandinaviske Matematikerkongres i Kebenhavn 1925,
Copenhagen, 1926, p. 157.

Later published in French:

Quelques applications de la méthode de Véquilibre statistique dans lo

théorie des probabilités. ‘

Annales des Postes, Télégraphes et Téléphones, vol. 17, 1928, p. 743.

This work forms the basis of a lecture given by Erlang at the Sixth
Scandinavian Congress of Mathematicians in Copenhagen, 1925; it con-
tains a survey of the most important of Erlang’s earlier results with respect
to distribution of calls, loss problems, and waiting time problems, from
the publications mentioned above under Nos. 1—4.

In this paper, the significance of the principle of statistic equilibrium
to these problems is strongly emphasized and a number of new figures
are added, in Tables 1—4, in order to illustrate the application of this
principle; also, some references are given to its application in other do-
mains than the theory of telephone traffic.

Erlang’s interconnexion formula — published in the work here referred
to as No. 4 — is, besides, mentioned in two letters from Erlang to G. F.
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O’ Dell; an extract of the letters has been published in the form of an
appendix to a treatise by O’Delll).

The appendix comprises four tables, of which Tables 1 and 3 containing,
respectively, the interconnexion formulae and numerical values of the
loss as calculated by means of this formula, are reproductions of Tables
3 and 5, respectively, in the above mentioned work No. 4, whereas Table
2 contains numerical values of the quantities N and T involved in the for-
mula, and Table 4 gives the logarithms of certain binomial coefficients.

Erlang has, in addition to the published papers on the theory of tele-
phone traffic mentioned above, in the course of his employment at the
Copenhagen Telephone Company written various notes about problems
related to the subject. Most of these, however, are not of general interest
as they treat concrete problems at hand by means of the principles and
methods of calculation given in Erlang’s published works; they were not
written for publication, but only for use inside the walls of the Telephone
Company. :

The following work makes an exception, though; it treats of a new
principle for the calculation of the number of circuits, and it is written
in such a form as to render it well fitted for publication: '

6. On the Rational Determination of the Number of Circuits. p. 216.
Written in 1924. First published in the present book.

The usual practice when calculating the number of lines or switches
has hitherto been that of prescribing certain values for the loss or the
waiting time, e. ¢., in the case of busy-signal systems, the loss B = 0.002.

This principle is, however, open to weighty objections. A group con-
sisting of few circuits can carry only a very small amount of traffic per
circuit, compared with a large group of circuits calculated to give the
same loss; the small group will consequently be much too expensive,
considering its traffic capacity. For the sake of economy larger values
of the loss are therefore often tolerated for small groups, these values
being fixed in a rather arbitrary manner not based upon any rational
principle. :

Besides, the calculation of the number of circuits for a fixed value of
loss or waiting time causes large groups to be considerably more sensitive
to congestion than smaller groups, so that a certain increase of traffic.
beyond the normal traffic involves a considerably greater increase of the

1) G. F. O’Dell: The Influence of Traffic on Automatic Exchange Design. The Institution
of Post Office Electrical Engineers, Publication No. 85, London, 1920, Appendix 1,
Pp. 35—47.
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loss or the waiting time in the large groups than in the smaller ones. Then,
by way of making up for this circumstance, an extra prescription is often
added, to the effect that the loss or the waiting time must not increase
beyond a certain limit for a given excess of traffic. Thus, in a frequently
used prescription the condition that the loss must not exceed B = 0.002
for normal traffic is supplemented with the condition that the loss must
‘not exceed B = 0.01 for a 10 per cent. increase of the traffic. Since the
two corresponding computation curves intersect when the number of cir-
cuits = 70, it is obvious that the curve corresponding to B = 0.002 is
to be followed for groups of less than 70 circuits, whereas, for groups of
more than 70 circuits, the other curve must be followed.

It stands to reason that such calculating principles cannot be regarded
as a satisfactory solution of the problem. A rational method of calculation
should follow a prescription that is uniformly applicable to large as well
as to small groups.

Such a rational principle for the calculation of the number of circuits
has been given by K. Moe, Engineer-in-Chief to the Copenhagen Telephone
Company. Moe’s principle is based on the following reasoning: The im-
provement of the traffic conditions gained by adding one new circuit to
a group of circuits consists in a certain reduction of the number of lost
calls or waiting time units per unit of time. Accordingly, in order that
the calculation of the number of circuits in the group can be called econom-
ically rational, the “improvement’ — 4. e. the decrease of the number
of lost calls or waiting time units per unit of time obtained by adding one
circuit to the group — must be the same whether the number of circuits
in the group is large or small. The value of the “improvement’ to be
prescribed for a certain group of circuits must be fixed with due regard
to the expense per circuit.

When the number of circuits is calculated on the basis of a fixed value
of the “improvement”, the loss — or the waiting time, respectively —
will decrease evenly as the number of circuits increases. By the use of
this principle, the disadvantages of the calculation based upon fixed
values of loss or waiting time are avoided without extra prescriptions.

Only two publications dealing with the Moe principle have as yet
appeared, a very brief mention in 1931!) and a somewhat more detailed
representation in 19402).

In his work from 1924, Erlang treats the calculation of simple groups

1) «“Kjpbenhavns Telefon 1881-—1931”, Copenhagen, 1931, p. 47; also published in
English: ““The Development of Telephonic Communication in Copenhagen 1881—1931",
Ingenisrvidenskabelige Skrifter A, no. 32, Copenhagen, 1932, p. 142.

?) Section 12 of: E. Brockmeyer: »Grundtrek af Sa,ndsynlighedsregnihgens Anvendelse
i Telefonien«, Ingenieren, 1940, p. E21.
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of circuits in compliance with this principle and deduces the ‘“‘improve-
ment”” formulae for busy-signal systems (Formula 2) as well as for waiting
time systems (Formula 6), supplemented with two tables of numerical
values of the ¢improvement”. In connexion with the two “improvement’
formulae Erlang further gives two approximative formulae expressing
the “improvement’’ by means of the Gaussian Normal Function (Formulae
3 and 7, respectively); since Erlang has not given any proof of these
approximative formulae, I give a deduction of the formulae in Appendix
2, p. 120.

Erlang also took a great interest in the application of the theory of
probability outside the field of telephone traffic, such as its application
to various physical problems, genetic problems, and statistics of popu-
lation. He wrote, however, only one paper on these subjects, viz., the
following, which treats of a fundamental problem ‘in theoretic physics,
Maxwell’s Law:

7. A Proof of Maxwell’s Law, the Principal Proposition in the Kinetic
Theory of Gases, p. 222. '

First published in Danish:

Et Bevis for Maxwells Lov, Hovedseiningen ¢ den kinetiske Luftteori.
Fysisk Tidsskrift, vol. 23, 1925, p. 40.

Later published in French:

Démonstrations de la loi de Mazwell, proposition fondamentale de la
théorie des gaz.

La Vie Technique et Industrielle, vol. 8, 1926, p. 72.

In this work Erlang gives, by means of the principle of statistic equilib-
rium, an elementary proof of Maxwell’s law of distribution for the
velocity of gas molecules. Erlang’s predilection for a brief and concise
style and his faculty of pouncing upon the essential points of a complicated
problem. appear clearly from this work. After a short historical in-
troduction concerning the application of the theory of probability to
physical problems, Erlang formulates the necessary assumptions as to
the nature of the gas molecules and the effects of their collisions. Erlang
has here reduced the necessary assumptions to a minimum; basing his'
proof on the very simplest assumptions of mechanics, he does not even
use the fundamental theorem of energy. Starting from these minimal
assumptions, Erlang then proceeds to give a quite elementary proof of -
Maxwell’s Law, showing by a simple geometrical consideration that the
Maxwellian law of distribution satisfies the conditions for a state of
statistic equilibrium. '
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B. Works Concerning Mathematical Tables.

"A subject that interested Erlang very much was the calculation and
arrangement of numerical tables of mathematical functions, and he had
an uncommonly thorough knowledge of the history of mathematical
tables from ancient times right up to the present.

Erlang has set forth a new principle for the calculation of certain forms
of mathematical tables, especially tables of logarithms, and published
the following works about it:

Om Indretningen og Beregningen af fircifrede Logaritmetabeller. (On
the Arrangement and Calculation of Four-Figure Tables of Logarithms).
Nyt Tidsskrift for Matematik B, vol. 21, 1910, p. 55.

A somewhat enlarged version of this work was later published in
English:

8. How to Reduce to a Minimum the Mean Error of Tables, p. 227.

The Napier Tercentenary Memorial Volume, Royal Society of Edin-
burgh, 1915, p. 345.

-This English version has been reprinted in the present book. Erlang
herein mentions two principal types of tables: Type A, comprising tables
adapted for ordinary linear interpolation, and Type B, comprising tables
provided with a special auxiliary table for interpolation of tenth parts
for each horizontal row in the main table. Erlang then shows how the
greatest possible average exactness can be secured by means of the
“method of least squares” — well-known from the theory of errors —
according to which the table values are to be calculated so that the sum
of the squares of the errors of all the values obtainable from the main
table and the interpolation table is a minimum.

Capt. N. E. Lomholt has written a review of the above-cited Danish
paper in Nyt Tidsskrift for Matematik B, vol. 22, 1911, p. 8, in which
he makes some critical comments on Erlang’s method.

Erlang published, on p. 10 in the same volume, a reply containing some
supplementary remarks among which may be mentioned a more explicit
statement of reasons for the application of the ‘method of least squares”
to the calculation of tables of logarithms; this remark is reprinted as
a foot-note on p. 229.

Erlang has applied his method, as described in these works, in practice
to the calculation of the two tabular works mentioned below:
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Fircifrede Logaritmetavier og andre Regnetavler til Brug ved Undervis-
ning og ¢ Praksis. (Four-Figure Tables of Logarithms and other Mathe-
matical Tables for Instruction and Practical Applications).
Copenhagen, 1911, and later editions.

These tables are available in 3 different editions: A, B, and C, of which
the most comprehensive, C, contains four-figure tables of common loga-
rithms and antilogarithms, table of squares, compound interest tables,
tables of trigonometric functions and their logarithms, table of natural
logarithms, and some supplementary tables. Owing to their exactness
and practical arrangement, Erlang’s tables can be classified among the
very best of their kind; having acquired a large circulation, they have
been reprinted. several times.

Femcifrede Logaritmer og Antilogaritmer — Five-Figure Tables of
Logarithms and Anti-Logarithms. ’
Copenhagen, 1930.

Besides five-figure logarithms and antilogarithms, these tables also
‘contain a seven-figure table of log (1 + 2)". A part of the tables was in
the press when Erlang died in 1929, and the edition was completed by
Mr. R. E. H. Rasmussen, Ph. D. There are both Danish and English
explanatory texts.

Erlang further published some shorter articles on the subject of
mathematical tables:

Logaritmetabel og Regnestok. (Tables of Logarithms and Slide Rule).
Fysisk Tidsskrift, vol. 10, 1911—12, p. 285. ‘

Prof. Jul. Hartmann had in an article about the logarithmic slide rule,
published in the same journal on p. 230, praised the slide rule as being
much better in respect of speed and serviceability than the four-figure
table of logarithms, and recommended that slide rules be brought into
use in school-teaching.

In his rejoinder, Erlang defends the use of the four-figure table of
logarithms; he states, on the basis of some comparative speed trials he
had made, that the slide rule is not much quicker (50 per cent. at most)
than the four-figure table of logarithms which affords at least a ten times
greater exactness.

Prof. Hartmann replies on p. 286 and admits to some extent the justness
of Erlang’s criticism.
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Review of “Karl Pearson: Tables of the Incomplete Gamma-Function’.
Skandinavisk Aktuarietidsskrift, vol. 6, 1923, p. 128.

In continuation of a mention of the methods of calculation employed
by Pearson in the computation of his tables, Erlang mentions various
tables of related functions and makes some remarks upon different inter-
polation formulae and methods of numerical integration.

Om et Par nye Multiplikationstabeller; en udvidet Anmeldelse. (On
Some New Multiplication Tables. An Extended Review).
Matematisk Tidsskrift A, vol. 38, 1927, p. 115.

Erlang reviews herein a couple of small multiplication tables and
mentions in this connexion various old and new tables of similar kind.
He also states some reflections on calculation technique and nomo-
graphy, and finally gives a copious list of literature on calculation tech-
nique.

Erlang has further written reviews of some compound interest tables
in Nyt Tidsskrift for Matematik A, vol. 26, 1915, p. 38, and vol. 29,
1918, p. 40. '

C. Other Mathematical Works.

Erlang was keenly interested. in, and had a great knowledge of, many
other branches of the science of mathematics than those mentioned under
Sections A and B. The below-cited works, however, can give the reader
but a faint idea of this fact, as Erlang, apart from answering the Universi-
ty Mathematical Prize Question for 1902—03, has published only 3 small
articles on different subjects, all dating from his early years before his
employment at the Copenhagen Telephone Company.

The annual prize questions of the University of Copenhagen are intended
for being attempted by young men of science under 30 years of age, and
the answers received are not published. Fully satisfactory answers are
rewarded with gold medals, while such answers as are not considered
worthy of gold medals but nevertheless bear witness of good scientific
qualifications may be rewarded with a minor distinetion called “Accessit”.

Translated into English, the wording of the mathematical prize question
for the year 1902—03 was as follows:

“Find in Huygens’s works and recently published epistles his solu-
tions of such problems as are now solved by means of the differential
and integral calculus, and explain these solutions.”
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Erlang’s work as a teacher did not leave him time enough to give a
complete treatment of the prize question. He expresses his regret for this
fact in his answer which he modestly calls an ‘“‘attempt at an answer”.

The judging committee, consisting of the professors 7'. N. Thiele, H. G.
Zeuthen and. Julius Petersen, states in its judgment?) that Erlang’s work
cannot be recognized as an adequate answer; that it, however, on account
of its excellent and complete treatment of Huygens’s mathematically
most important work ‘Horologium oscillatorium” should be rewarded
with ‘“ Accessit”.

Lidt om det grafiske Korrespondensprincip. - (Something about the
Principle of Graphical Correspondence).
Nyt Tidsskrift for Matematik B, vol. 17, 1906, p. 58.

In a treatise on graphic curves?), Prof. C. Juel had set forth, and proved,
the following theorem: ““If there exists a continuous dependence between
points X and points ¥ on a straight line, so that there are p different
points Y corresponding to each point X, and ¢ different points X cor-
responding to each point Y, and if the two directions of orientation are
opposite, there will be p 4 ¢ common points”.

Erlang gives in his article two new proofs of this theorem and mentions
some applications of it.

Om Definitionen af Cirkelperiferiens Loengde. (On the Definition of the
Length of the Perimeter of a Circle).
Nyt Tidsskrift for Matematik A, vol. 18, 1907, p. 40.

In this short article Erlang makes some remarks upon the definition
of the length of the circumference of a circle by means of inscribed and
circumscribed polygons.

Flerfoldsvalg efter rene Partilister. (Mamnifold Polling based wpon Pure
Party Lasts).. :
Nyt Tidsskrift for Matematik B, vol. 18, 1907, p. 82.

For the apportionment of the p available candidates’ seats according
to the respective numbers of votes ay, g5, as, ... secured by the different
parties involved in an election, Erlang enumerates the following condi-

1) Indbydelsesskrift til Kjebenhavns Universitets Aarsfest i Anledning af Hans Maje-
stet Kongens Fodselsdag den 8. April 1904, p. 67.

2) . Juel: Indledning i Leeren om de grafiske Kurver. Det Kgl. Danske Videnskabernes
Selskabs Skrifter, 6. Rekke, naturvidensk. og mathemat, Afd. 10, Bd. 1, Copenhagen,
1899, p. 1.
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tions as being necessary and sufficient to ensure the election against any
unfair results:

1. It must be impossible for any party to gain anything by some
of its adherents’ failing to vote.

2. It must be impossible for any party to gain anything by some of
its adherents’ giving their vote to the list of another party.

3a. When two minor parties coalesce into one major party, it must be
impossible for either of the original parties to lose anything in conse-
quence hereof (when the major party disunites into two, it must
be impossible for either of the minor parties to gain anything).

3b. When two parties coalesce into one, it must be impossible to gain
more than one seat in consequence hereof (when one party disunites
into two, it must be impossible to lose more than one seat).

Erlang proves that these conditions can be satisfied only by using the
method of calculation suggested by V. d’Hondt'); by this method, the
seats are apportioned according to the magnitudes of the incomplete
quotients obtained by dividing @, @,,.a;, ... by a divisor d chosen such
that the sum of the quotients becomes p.

Appendiz 1. Erlang’s Interconnexion Formulo.

In his treatise: “The Application of the Theory of Probabilities in
Telephone Administration” (p. 172) Erlang published — in Section 3¢ and
Table 3 — his noteworthy interconnexion formula without proving it.

A deduction of this formula, using the principle of statistic equilibrium,
will be given in the following.

Let it be assumed that altogether z trunks are provided, and that the se-
lectors employed have k& contacts, &k < z, so that any one callis given access
only to k of the z trunks; furthermore we presuppose that the holding times
are distributed exponentially. Erlang now assumes an arrangement con-
sisting in that the total traffic y offered to the z trunks is divided into so
many equally large groups as to make one group for each of the ways in
which it is possible to select £ out of the x trunks and hunt over these &

trunks. As % trunks can be chosen in (Z),Wayé from among the , and the

k trunks can be hunted over in k! different manners of following, the
!

traffic y must be divided into altogether (:) k= (__x-]g)_? equal groups.

1) V. d’Hondt: Exposé du systéme pratique de représentation proportionelle adopté
par le comité de I’association réformiste belgique. Gent, 1885.
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Divided in this manner the traffic may be regarded as being distributed
absolutely at random over the z trunks.

Let us now consider a call originating at an instant when altogethel 7
out of the z trunks are busy. The call has access to & particular trunks
among the x trunks, and we want to find the probability that the call will
be lost, which will happen only if all £ trunks are busy.

If » < k, the k trunks cannot all be busy, and accordingly the probabili-
ty is zero.

If » = k, the sought probability will, owing to the fact that we — as al-
ready mentioned — may consider the r busy trunks distributed absolutely
at random over the z trunks, be identical with the ratio of the number of
ways in which k trunks can be chosen out of r trunks to the number of
ways in  which % trunks can be chosen out of z trunks. Accordingly, the

3
sought probability is <i

x
In order to determine the probabilities Sy, Sy, Sy, ..., S, that 0,1, 2,
., « of the z trunks will be busy, we consider an infinitely short time
interval dt and assume that r trunks will be busy at the end of this inter-
val, the corresponding probability being S,. Now, this assumption can be
satisfied in 3 ways only, viz.: —

1) if » —1 trunks were busy at the beginning of dt, probability: S, ,, and
a call resulting in the occupation of a new trunk has originated during
the time d¢; the probability of this is, according to the above, y - df for

%)
r—1<k, andy°< —«%—) dtforr—l = k; or
)

2) if » + 1 trunks were busy at the beginning of dt, probability: S, .,
and 1 of these r 4- 1 calls has terminated during the time dt, probabili-
ty: (r -+ 1) dt; or |

3) if r trunks were busy at the beginning of d¢, probability: S,, and no
call resulting in a new occupation has originated. and none of the r
calls in progress has terminated during the time df, probability:

| | f
l—y-dit—r-dt for r <k, and 1-y-( —»';—j—)-dt——r'dtfor
f
r = k.



Appendix 1. Erlang’s Interconnexion Formula. 115
Thus, using the principle of statistic equilibrium, we have:

S, =8, 1y dt-+8, - (r+1)-dt+ 8, (1—y-dt—r-dt) for r < k,

r—)
S,.—Srl-y-(l,—b;)-dt+8r+1~(9‘+1) - dt

(7

7

or:

‘(7+ 1) ) Sr—lAl = (y + 7‘) ! S1'—y ' Sr—l fOI' r< k’

f %)
(r+1)-8,,, = (y ( — <—x')>—|—r> “S—y- (l — —(,-x)—~> -8,_, for r = k.
k) , \k

Putting » + 1 =1,2,3, ..., 2, we obtain the following system of equa-
tions:
8y =y-8,

282=(y+1)-81—y'80

-
+
=
NZal
£
~
I
TN
<
-
—
Sl
PN
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By successive addition of these equations, we get

S =1vy"8
28, =y-8
k-8 =y Spa

k .
(k+1) S =Yy- (1 - <I;>) - 8,
)

8, =98,
y?
SZ'—H'SO

k
Yy
Slc:—];;T SO
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where we have introduced the notations:

From the relation
So+8 +8 4+ +8,=1

we finally obtain:

1
S, — ,
y? ¥yt | Y
1+Z/+a+"‘+k—!fm'Nk+l+"'—I-H‘Nx

by which the sought probabilities Sy, Sy, S,, .. ., S, are determined.
The probability of loss can now be determined directly, since we have
found in the foregoing that the probability that a call will be lost when al-

pana 8
together r out of the & trunks are busy is zero for r < k, and % for » = k.

The probability of loss is, accordingly, (lc)
k k41 2
:Sk-gg+gk+l.%%_)_>+...+sz.%
[ & L k41 x ]
:So.l%'%+(_lf:y—:jlf)—!'Nk+l.< é)) e Z;Nﬁé%;l

Now we furthermore introduce the notations:

T, —1—N =i_ 1_@ z@
| <z>) 5

I
. k
Tyyr=Nipr— Nippyr = Nipr— Ny <1—— ) = Nigr-
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thus obtaining

_s 17 v A
B—So{ﬂ Tk+m Tipa + 00+ T:r"

whence, finally, by introducing the value of S, found above,

k k+1 @
Y Y Y
Z . L A N T
k! ’”+(k+1)! b1 Fx! @
le yz yk ylx:+1 N yw N °
R TE R YR T u Y R A A

This formula for the probability of loss is identical with the formula
given by Erlang, which only differs in form from this expression. In order
to give the above expression the same appearance as Erlang’s formula, we
note that, in consequence of the relation

) _(2)

v}

the expression for N, ,, may also be written:

x—Fk
which is the form given by Erlang.

Further, we put

_Nl):Nl:_NZ:"':Nk:]_,
T, =T,=Ty=--=T,_,=0.
Finally, we multiply the expression for B by‘ ¢ in numerator and de-
S
nominator and put P, =¢7- %'—
s!

In this manner we obtain

_TO'P0+T1’P1+"'+Tg;'Pa;
Ny-P,+N,-P,+---+N,- P/’

B

which'is the formula given b}l} Erlang.
This formula is greatly interesting in that it gives the exact solution of
an interconnecting-problem for arbitrary numbers of trunks, z, and con-

&

“&
t

=
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tacts, &, whereas no such generally valid formulae for the loss in the com-
monly used grading-systems are known.

Erlang terms the interconnecting-method, on which his formula is
based, the ideal method; and he considers this method likely to give mini-
mum loss. On the whole, Erlang may possibly be right in conjecturing
this; nevertheless it is not correct in all cases, as it will appear from a com-
parison with other gradings in cases where the number of trunks z is so
small that it is possible to carry out the calculations. Thus, when Erlang’s
formula for the values z = 3, k = 2 is compared with a 2-contact-grading
with 2 groups, consisting of 2 individual circuits and 1 common circuit,
where the traffic is % ¥ in either of the 2 groups, we find the fo]lowmg
values of the loss B for different values of y:

Y = 0.1 0.6 1.0 2.0 3.0 5.0
Erlang’s Formula. . ... 0.00161 | 0.03390 | 0.10638 | 0.26415 | 0.39130 | 0.55746
2-Group-Grading . .... 0.00130 | 0.03153 | 0.10494 | 0.26705 | 0.39600 | 0.56199

In this case Erlang’s method evidently gives a slightly greater loss than
the 2-group-grading for values of y less than about 1.3.

Erlang gives two approximative formulae, one of which is applicable
for very small values of y; for y < 1 it is sufficient to include the term

containing the lowest power of ¥ in numerator and denomihator, ie. T 'Tk
and 1, respectively, thus.obtaining ’

VA oy L k)
B T =g O Newd = 3 @—y T
k/

The other approximative formula is applicab]é in cases where x and y are
so great in comparison with % that the probability that a call will find each
of the k contacts busy, with sufficient approximation can be regarded as
constant and equal to the average traffic per circuit, a, so that

B ~ d*.

Yy (1—B)

The aVérdge traffic per circuit is a = ; for small values of B,
z

obviously a ~ ﬁ, and therefore:

k
BN(E).
x

The last mentioned approximation formula forms the basis of G. F. 0’ Dell’s
well-known method of calculating the loss in ordinary gradings.)

1) @. F. O'Dell: Outline of the Trunking Aspect of Automatic Telephony, Journal of the
Institution of Electrical Engineers, vol. 65, 1927, p. 185.
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Appendix 2. Approximative Formulae for Loss and ‘‘Improvement”.

In his dissertation “On the Rational Determination of the Number of
Circuits” (p. 216), Erlang has — without proofs — given two approxima-
tive formulae (Formulae (3), p. 217, and (7), p. 220) which express the ‘‘im-
provement’’ in lost-traffic systems and waiting-time systems, respectively,
by means of the Gaussian Normal Function.

A deduction of these formulae and related formulae for the loss B and
the average waiting time M is given in the following.

In the case of a group of x circuits with an intensity of traffic , the loss
as determined by Erlang’s B-formula is

!
B(z) = w“ e (1)
1+?/+—‘)—Y‘+"'+?

or, multiplying in numerator and denominator by ¢¥,

Bl@) = Ple) , (1a)
PO) + P() + - + P(x)
where P(z) is Poisson’s function:
P) =2 e, )
z!

As we shall show in the following, this Poisson function can be expressed,
with an approximation that improves as y increases, by means of the
Gaussian Normal Function :

h?

(R .
sﬁ(h):l/‘)—'6 2. 3)

)
The variable in this function is A = — , where § is the deviation from the
(o4

mean value and o is the standard deviation. )
It is well known that the Poisson function (2) has the mean value y and

the standard deviation l/g;, that is to say,
d=xz—y.
and o=Vy, or y=od (3a)
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The variable, A, of the Normal function must therefore be

2"V
oy

x:y—l—h'l/;:oz—}—h-c. (3b)

whence

Introducing the expressions‘ (3a) and (3b) into the Poisson function (2)

we obtain
& 2. (0% 110
P(z) = Yogva T e
z! (6® + ho)!

Now we replace the factorial (o2 4 % ¢)! by its Stirling approximation,
as it is well known that

mlz‘/Q—;.mm+%.e—m.<l+ 1 —I—)

12m
Thus we get
2-(o®+ ho) , ,—o*
Pla) = —— ~ -
V2w - (o2 + ho)otho + ¥ . got—ho, <1 + 1 4. >
' 12 - (6 + h o)

eho

1
= S h 02+h6+'?2.<1—-12o'2+...>.
V27r'a'<1—[——>
g

In order to obtain an expansion of P(x) in a series arranged according to

1
powers of —, we take the natural logarithm of the above expression:
o

log P(x)=ho—log (VE o)—(o®+ho+ %) - Iog (1 + g)—l—log <1— lglgz—i—' : '>,

whence, for o > £, we get the expansion

— hooR R R 1
logP(x)= hO"‘—'].Og(l/QlﬂT o) —(o®+ho+ 3)- <;__£r_2 + §_U3_4_U_4_’_. . >_ e

Bl
=4%Mﬁw————@mww_;-u_muwwyw

2 6o 12 o?

and accordingly

._{_...
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P(x) = _1 . e_g . 6—61—0(3h—h“)—121@-(1—3h2+m)+~--
V2 T
1 SEANYS B | 1
= Vi-e 2 -(»—Mﬁ‘(%——h3)—m(ﬁé27h2+1»2k4——h5)—{—- ).
P a g a

Introducing the expression (3) we finally find the approximative formula:

1 1 1.
P(x) ~ ¢(h) - <;———(3h——k3)—

602" 72 o

(6 — 27 h% 4+ 12 h* — k6)>. (4)

The sum P(0) + P(1) + - - - + P(z) contained in the denominator of the
expression (la) for B(z) can now be determined by means of Euler’s sum-
mation formula:

P(0) + P(1) + -+ - + P(x) =
§P(W)'dw+%(P(0)+P(w))+T1§(P’(96)—P'(0))%7%6' (P (@) —P""(0)) 4

0

in which we replace P(x) with the approximation (4), which we will call
F(h). For the lower limit of integration we obtain from (3b) the value h =
— o, corresponding to z = 0. For large values of o (¢ > 5), this quantity
can be replaced by A = — oo, and the terms P(0), P’'(0), ... will further-
more become negligible. We find, moreover, from (3b) that dx = o - dh,
so that we get

P(0) + P(1) + - - - + Pla) ~ |
]§ F(h)- o - dh +%-F(h)+flg-F'(h)

—00

1
720068

Flll(h)+__.

Putting ¢(h) = ¢ and }\L é(h) dh = ¢_; we find:

—00

: 1 1
{ F(h)-o-dh~¢_, +¢'<€Z' (1—h2) — (BB —TH + hs)),

! ! -(3k—k3)>, '

B~ (5

é'cﬁl2 o?

1
—F'(h) ~— ¢ - s
120 () ¢ 12 o2

and thus
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1 1
P(0)+P(1)+- - -+P(@) ~¢_,+¢ <87§' (4R — - (30k~13h3+k5)> ,

whence

! _1.<1_i.<1 .
P(0) +P(1) +--- + Plx) ¢_, $ 4 \6o

(307 — 13 h® + h5)> + <¢i;1> 36102 - (16 — 8 A2 h4)>.

Inserting this expression and the expression (4) for P(z) in (la), we get
the following approximative formula for B(z):

T 7202

1 1 1 .
B(x) Ni . <~*— “(83h—h%) — —r (6 — 27 h% + 12 % — h6)>
b, \o 6 o2 72 o3

_<i>2- <—1-.- (A Bt . (1ék—9hs+h5)>

6 o 24 ¢8

+<i>3- L 16— 8R4 (5)
$_,) 360
This formula, giving B(z) with good accuracy for great values of y (see
further particulars p. 125), is especially useful when it is desired to calculate
B(x) for so great values of y that they fall outside the range of the tables?).
For very great values of y, formula (5) may be reduced to the simplified
form :

This formula, however, gives only a rather rough approximation for such
values of y as are important in practice.

For the sake of simplicity we shall confine ourselves to using formula
(5a) as basis for the following derivation of approximation formulae for
F,, M, and F,, these mostly having theoretical interest.

In Erlang’s formula for the “improvement’ in loss systems:

F,=y-Ble—1)—y- B@), (6)

we develop the difference by means of Taylor’s series:

2
y-B@+w—y B@) =y-u-B'@)+y - B@) -,

1y Conny Palm: Table of the Erlang Loss Formula, Stockholm, 1947, gives B for values
of y less than 100.
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replacing B(x) in this with the approximation (5a), i. e.,

‘ ¢
Yy Bx) =2 B(x) ~f(h) = o —.
$1
We have from (3b) that to the difference u = 4z = —1 corresponds
1
4h = — —, and that dz = o - dh, so that we get
o
1 1 1
By f(hi= )= ) = = ) 5y 1B —
g o o
whence :
¢ ¢\
P~ (1), @)
tod b

which is the approximation formula for ', as given by Erlang.
Determined by Erlang’s formula, the average waiting time for a group
of  circuits with traffic intensity y is

1 B(x—1)- B@®)

M) = z—1y ' B(x — 1) — B(x) ®)
Using the relation
oz B(x)
we obtain
M) = —* B(@) (8)

~#—y z—y+yB@)
Introducing the values (3a) and (3b) for # and y, and (5a) for B(z), into
(8a) we get the following approximation formula for M(zx):

a—ijh', ¢
o §Fhdy

M(z) ~ (10)

Treating Erlang’s formula for the “improvement” in waiting time sys-
tems,
Fo=y-Me—1)—y- M), (11)

in the same manner as the formula (6) for F,, we get

1
Fy~— =g )
g -
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where, according to (10),
o+ h ¢
R ¢ +hy

y - M(x) ~g(h) =

and so we find '
B QAR d g 2R Y
* (¢ + ho_y)? - B2 ’

which is the approximation formula for F, as given by Erlang.

We shall finally illustrate by an example the value of the approximative
formulae found above, and we choose z = 120, y = 100. From (3a) and
(3b) we find ¢ = 10 and # = 2, and from tables of the Gaussian Normal
Law, ¢ = 0.053991 and ¢_, = 0.977250.

The exact value of B(z) is B(z) = 0.005690, while formula (5) gives
B(z) = 0.005689, the difference being only one unit in the sixth place;
formula (5a) gives B(z) ~ 0.005525, i. e. an error of 2.9%,.

The exact value of ¥, is, according to (6), F; = 0.1177, whereas (7) gives
F, ~ 0.1135, error: 3.6%. (8) gives the exact value of M(z), M(z) =
0.001660, while (10) gives M (x) ~ 0.001613, error: 2.8%. The exact value
of F,, given by (11), is Fy; = 0.0525, whereas (12) gives Fy ~ 0.0401,
error: 23.6 %. . _ ’

As it appears from this example, the formulae (5a), (7), (10), and (12)
give a rough approximation only, even for so great a value of y; the approx-
imation formula for F,, especially, differs widely from the correct value.
More exact formulae can, of course, be obtained by using formula (5) as
basis instead. of (5a), but they will be complicated and unpractical.

When calculating M, F,, and F,, it is easier and better to start from B
and compute the said quantities by means of the simple, exact formulae
(8) or (8a), (6), and (11). The value of B can be found in the table mention-
ed in the foot-note p. 123 or computed by means of formula (5) for greater
values of v.

The following small table, showing, for o = 10, the error % for different
values of , will serve to give an impression of the error in B(z) resulting
from the use of formula (5):

B(z) for y = 100, ¢ = 10.

(12)

z L | Exact Value | Formula (5) Error k
100 0 0-075 700 0-075 703 | 4 0:000 003
105 05 0-048 261 0-048 266 -+ 0-000 005
110 1-0 0027 463 0-027 468 | 4 0-000 005
115 15 0013 575 0013577 | + 0-000 002
120 2-0 0-005 690 0-005 689 |—0-000 001
125 25 0-001 989 0-001 989 0-000 000
130 3-0 0000 576 0-000577 | -4 0000001
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10\*
For other great values of o the error will be f~ % - (-—) , where k for

o
different values of % has the values stated in the table above. Any value
of B computed by formula (5) may, if wanted, be corrected by subtract-
ing the corresponding error f as given by this expression.



A SURVEY OF A. K. ERLANG’S ELECTROTECHNICAL WORKS

By H. L. HALSTROM.

At the time when Erlang began his work in the service of the Copenhagen
Telephone Company one of the problems that had special interest for
the Company was the use of cables with artificially increased self-induction
in order to improve the fransmission quality. There were two solutions
of this problem to choose between, viz. the method. of increasing the self-
induction of a circuit at uniformly spaced points, as suggested by Prof.
M. Pupin, and the method of increasing the self-induction continuously,
as suggested by C. H. Krarup, M. Sc., Chief Engineer of the Danish
State Post & Telegraph Administration, and J. L. W. V. Jensen, M. Sc.,
Ph. D., Engineer-in-Chief to the Copenhagen Telephone Company ; conse-
quently it became part of Erlang’s duties to carry out a great deal of
calculations of various kinds, respecting e. g. the profitableness of different
systems, the optimum, interval between Pupin coils, the maximum reduc-
tion in attenuation by Krarup’s method, ideal loading, &c. Most of these
works are purely calculative even though they comprise several theoretical
works also. Only one of the latter has been published, viz.:

9. An Elementary Treatise on the Main Points of the Theory of Telephone
Cables, p. 2331).

Published in Danish under the title of
Hovedpunkterne af Teorien for Telefonkabler i elementer Fremstilling.
Elektroteknikeren, vol. 7, 1911, p. 139.

After a historical, mathematical, and physical introduction to this
work, Erlang deduces in a simple manner the principal formulae concern-
ing the infinitely long, homogeneous cable; the results are then applied
especially to cables with artificial, continuously distributed self-induction.

1) The numbers prefixed in this survey to the titles of Erlang’s reprinted works corre-
spond te the numbers of the reprints in the present book, to which also the suffixed page
numbers have reference.
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It is shown that any length of cable is characterized by 4 principal con-
stants, only 3 of which need be known as all 4 principal constants are
linearly interdependent. The relationship existing between the principal
constants and some constants mentioned in the foregoing is demon-
strated, and rules of calculation are given for the connecting of cables
in series. Next, the coil-loaded, or Pupin, cables are mentioned, and the
cooperation of the receiving instrument with the line, and finally the
application of the theory to the measuring methods.

As an example of Erlang’s works on other subjects may be mentioned
the following:

10. An Hilementary Theoretical Study of the Induction Coil in a Subscriber’s
Telephone Apparatus, p. 253. '

First published in Danish:

Transformatoren ¢ et Telefonapparat, en elementer teoretisk Under-
sagelse. ' ‘
Elektroteknikeren, vol. 10, 1914, p. 169.

Later published in French:

Etude théorique élémentaire sur le transformatewr d’'un appareil iélé-
phonigue.

La Vie Technique et industrielle, vol. 9, 1927, octobre.

Having formulated, in this paper, the necessary assumptions, Erlang
sets forth, the basic equations that give the conditions with which a ser-
viceable induction coil must comply; the theory is then applied to an
example.

Being occupied with the theoretical problems presented by telephone
cables, Erlang soon found himself wanting an instrument for measuring
the transmission constants of cables, and this led to the construction
of his “Complex Compensator”. This compensator, constituting a decided
improvement as compared with complex compensators of earlier date,
is described in:

11. New Alternating-Current Compensation Apparatus for Telephonic
Measurements, p. 261.
Journal of the Institution of Electrical Engineers, vol. 51, 1913, p. 794.
First published in Danish:
Ht nyt Komﬁensatz’onsappamt 1l Vekselstromsmaalinger indenfor Tele-
fonien. '
Elektroteknikeren, vol. 9, 1913, p. 157.
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The apparatus contains two measuring wires, connected in parallel,
which are supplied with. current through resistors and inductors, respective-
ly. Potentials can be tapped from the two measuring wires by means of
sliding-contacts; the amplitude and phase of these potentials can be
adjusted so as to compensate an unknown potential. The apparatus can
be used for measuring impedances, for transmission measurements on
telephone circuits, and for measuring frequencies. '

Erlang’s complex compensator is easy to set up and easy to operate;
but the computation of the results takes some time, especially when meas-
uring on a range of frequencies, as the voltage vectors refer to oblique
coordinate axes whose angle varies with the frequency. By altering
Erlang’s compensator, Prof. P. O. Pedersen a few years later succeeded
in constructing a compensator!) with voltage coordinates which remain
rectangular for all frequencies. P. O. Pedersen’s compensator, however,
still has a disadvantage in that the scale by which abscissae and ordi-
nates are measured varies with the frequency, though the device may be
made direct-reading for a standard frequency; it has been put into
practical form by Messrs. H. Tinsley & Co.

Not satisfied that his problem had been solved with the publication
of the above-mentioned paper on the complex compensator, Erlang
occasionally took it up for renewed treatment. Thus, among his unpub-
lished works is the construction of a so-called ““‘complex current-compensa-
tor”’, the principle of which will appear from the subjoined diagram
showing the current-compensator when used for measuring the attenuation
in a cable. A paper by H. T. Stenby?) contains a brief description of the
apparatus.

The current-compensator contains two air-core transformers, the pri-
maries of which are connected in series and get their supply of current
through sliding-contacts as shown in the diagram. Owing to a capacitor -
being inserted in series with one primary, the secondaries can be tapped
for currents, the amplitude and phase of which can be varied so as to
compensate an unknown current. On the basis of the constants of the
compensator it is possible, for any desired frequency, to work out a dia-
gram arranged in such a manner that the attenuation can be read directly
as a function of the positions of the sliding-contacts along the slide-wire.

1) P. O. Pedersen: A New Alternating-Current Potentiometer for Measurements ‘on
Telephone Circuits, Electrician, vol. 83, 1919, p. 523.
2) H. T. Stenby: Nogle Vekselstromsmaalinger i Telefontekniken, Ingenieren, vol. 43,

1934, II, p. 17.
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This attenuation diagram consists of a family of Booth’s lemniscates?),
graphed relative to a system of oblique coordinate axes.

AF. Generator

—(~)
Sliding Contacts
Cable

wJ |
Transformers m
‘ (‘?Telephone

In continuation of his experiments with the current-compensator, Er-
lang had commenced the preliminary work in connexion with a new voltage-
compensator of a modified construction, but he did not live to complete it.

At his death Erlang left several notes — especially on Pupin cables,
but also on the balancing of two-wire repeater circuits and other problems
— which were not intended for publication. The only electrotechnical
studies published by Erlang are the three works commented upon above
and reprinted in the present book; they will serve to illustrate Krlang’s

faculty of applying mathematical points of view to the solution of elec-
~ trotechnical problems in telephony.

1) These curves, the corresponding Cartesian equation of which is (z? + y?)? = a?® 2? +
b2 42, are elliptic or hyperbolic according as the sign of the last member on the right side
of the equation is + or —. In the latter case, the curves for a?=1>5% will be ordinary
(Bernoulli’s) lemniscates, (22 ++ 32)? = a? (z® — y?). The curves referred to above have been
investigated by J. Booth in “A Treatise on some New Geometrical Methods’, London,
18717, vol. I, p. 162 ff. The name of “Booth’s lemniscates” was given by G. Loria (see:
(. Loria: “Spezielle algebraische und transzendente ebene Kurven”, 2. Aufl, 1910,
vol. I, p. 134).



) PRINCIPAL WORKS
OF

A. K.ERLANG‘

1. THE THEORY OF PROBABILITIES AND
TELEPHONE CONVERSATIONS

First published in “Nyt Tidsskrift for Matematik” B, Vol. 20 (1909), p. 33.

Although several points within the field of Telephony give rise to
problems, the solution of which belongs under the Theory of Proba-
bilities, the latter has not been utilized much in this domain, so far as
can be seen. In this respect the Telephone Company of Copenhagen con-
stitutes an exception as its managing director, Mr. F. J ohannsen, through
several years has applied the methods of the theory of probabilities to
the solution of various problems of practical importance; also, he has
incited others to work on investigations of similar character. As it is my
belief that some point or other from this work may be of interest, and
as a special knowledge of telephonic problems is not at all necessary for
- the understanding thereof, I shall give an account of it below.

1. The probability of a certain number of calls being originated during
a certain interval of time.

It is assumed that there is no greater probability of a call being at-
tempted at one particular moment than at any other moment. Let ¢ be
the time interval given, n the average number of calls during the unit of
time. We will find the probability S, of 0 calls being originated during the
time a, and afterwards the probability S, of exactly z calls being originated

during the time a. As ? is the probability of calls during the time 7&
when, 7 is infinitely great, 1 ~2? is, on the same &ssumption, the prob-
ability of 0 attempts being made during the time %. Hence we havé

Sy = lim (1 — fbi”); e, (L)

r=o00 r

Now in order to find §,, the time a can be divided into 7 equal elements
where r = x, and z of these elements chosen, which can be done in C, .
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ways. We are now seeking, firstly, the probability of 1 call being originated
during each of the x elements; secondly, the probability of no attempts

alr ——a;) The former

being made during the remaining Vtinnle, which is
r

probability is, for r = oo, (ﬁ?) ; the latter is according to (I)
r

_nalr— x)
e 7.

,naa: __na(r:—_a:) Cy 1
Thus, we get S, _th' e T, or, as lim —f=—
= r e 17 x!

(o)’ e e, 1))

z!

8=

. This formula becomes less complicated ]_f we let m denote na, the
average number of calls arriving duung the time a. Then we have

8 = m L (I1T)

2. The Law of Distribution.

When, in the formula thus found,  is allowed to assume the values of
all whole numbers from 0 upwards, the formula will express a cerfain
“law of error”’, or “law of distribution”. It is at once obvious that the sum
of all the probabilities is 1, as it should be; further, that the probabilities
of an even number and of an odd number of calls are, respectively,

e + e m P
T .

Zem_ ~ 2e™

" The chief property of the law of distribution is that all “half-invariants”’
are equal to m (T. N. Thiele: Theory of Observations, London, 1903);
here, I shall confine myself to showing that the mean square error is m.
We get,

12m  22m?  32m® 4%mt o .
ottt T o)

m

m3
T + 2T s

<m2 2 m? 3m4

4
F—I— 2‘ 3| __‘r + > -—m__,,n2

. — (mzem, _l__ me’m) e——m — mz — m.
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The simple suppositions leading to the simple formula (III) will not,
of course, always be satisfied in practice. Let us suppose, e. g., that a
business firm has certain busy days every week corresponding to a mean
value m,, and certain less busy days corresponding to a mean value m,.
Let the busy portion of the week be p,, and the less busy portion p,,
where p; + p, = 1. If it is desired here to express the variations in the
number of calls from day to day in terms of one single law of distribution,
we find that the mean value is '

P1My + PaMy;

but the mean square error is

Pvl?zr('mq - M )?

greater than the mean value. As, however, the preceding simple theory
proves, on the whole, to be corresponding fairly well with meter readings
experienced, we shall stick to that in the following.

3. Delay in answering >of telephone calls.

We will assume that each operator receives calls from a determinate
group of subscribers only, the system being designed in such a way that
she cannot get help from her neighbours even if she is occupied and they
happen to be free at the moment. By choosing a suitable unit of time,
we can fix the average at 1 call per unit of time. The establishing of a
connexion lasts ¢ units of time. If a call is originated while the operator
is unoccupied, we shall here consider the delay in answering, or waiting
time, as being non-existent (actually, a certain short space of time will
pass before the signal is noticed). If, on the other hand, she is occupied
with another call, then the calling subscriber will have to wait a certain
time. The problem is now to determine the function f (2), f () representing
the probability of the waiting time not exceeding z.

The probability that, at the moment a call arrives, the time having
elapsed since the preceding call should be confined within the limits

y and y - dy,

is e~ ¥dy. The probability that the waiting time of the precedmg call has
been less than z 4y — 4, is f (z +y —1). :
Hence, we obtain

[o9]

f(z) = { +y—t)erdy.

P/a

v



134 A. K. Erlang:

By differentiation with respect to z, this equation gives

') =\f'(z +y—i) ey,

y=0

and by partial integration,
f(2) = f(z —1) +S e +y—1)e?dy.
y =0 '
Thus we have

1'(z) = Hz) — f(z — 1) (Iv)

By integration, f (z) can now be determined in a succession of intervals,
on the assumption that f(z) = 0 for z < 0, jumps from 0 to 1 —t¢ for
z = 0, but varies continuously for all other values of z.

For 0<z<t,
t <z<<?2t,
21 <z <<3t,
3t <z<<4t,

nt <z<(n-41)¢
the results W]]l then be, respectively,
| ) = (1 —1) ¢
f@) = 1—1t) (€ + &7 (t—7))

6.2——: (t . z) ez—2t (2 t— Z)2 e né (nt—z)“
1! T 21 ‘!

fw:@~wQ+

This is easily proved by inserting in equation (IV) the value of f(z)
taken from the last of the above formulae, and the value of f(z —1)
taken from the last but one.

As to the numerical calculation, it will be advantageous to begin with

making a table of the function
: g
x!
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for negative values of m (e. g. with intervals of 0.1), and for positive and
integral values of «; for this purpose, one of the existing tables of log !
will be a good help. The oldest of these — which is, also, still the best —
is C. F. Degen: Tabularum enneas (Havnise, 1824). The terms in the
table of the function must then be summed along oblique lines, and the
obtained sums multiplied by 1-—£, to provide the values for the de-
finitive table giving f(z) as a function of z and ¢. A table of this kind is
printed below (table 1).

Table 1. Values of f(z).

t
00 | 01 | o 03 | 04 | 05 | 06 | 07 | 08 | 09 | 1.0

[

0.0 | 1.000 | 0.900 | 0.800 | 0.700 | 0.600 | 0.500 | 0.400 | 0.300 | 0.200 | 0.100 { 0.000
0.1 | 1.000| 0.995 | 0.884 | 0.774 | 0.663 | 0.553 | 0.442 | 0.332 | 0.221 | 0.111 | 0.000
0.2 | 1.000 | 1.000 | 0.977 | 0.855 | 0.733 | 0.611 | 0.489 | 0.366 { 0.244 | 0.122 | 0.000
0.3 | 1.000 | 1.000 | 0.991 0.945 | 0.810 | 0.675 | 0.540 | 0.405 { 0.270 | 0.135 | 0.000
0.4 | 1.000 | 1.000 | 0.998 | 0.967 | 0.895 | 0.746 | 0.597 | 0.448 | 0.298 | 0.149 | 0.000
0.5 | 1.000 | 1.000 | 0.999 | 0.983 | 0.923 | 0.824 | 0.659 | 0.495 | 0.330 | 0.165 | 0.000
0.6 | 1.000 | 1.000 | 1.000 | 0.992 | 0.947 | 0.856 | 0.729 | 0.547 | 0.364 | 0.182 | 0.000
0.7 | 1.000 | 1.000 [ 1.000 | 0.996 | 0.965 | 0.885 | 0.761 | 0.605 | 0.403 | 0.201 | 0.000
0.8 | 1.000 | 1.000 | 1.000 | 0.998 | 0.977 | 0.910 | 0.792 | 0.635 | 0.445 | 0.223 | 0.000
0.9 | 1.000 | 1.000 | 1.000 | 0.999 | 0.984 | 0.931 | 0.822 | 0.665 | 0.470 | 0.246 | 0.000

1.0 {1.000 | 1.000 | 1.000 | 0.999 | 0.990 | 0.947 | 0.849 | 0.694 | 0.495 | 0.261 | 0.000
1.1 | 1.000 | 1.000 | 1.000 | 1.000 | 0.993 | 0.958 | 0.872 | 0.722 | 0.520 } 0.276 | 0.000
1.2 | 1.000 | 1.000 | 1.000 | 1.000 | 0.995 | 0.967 | 0.891 | 0.749 | 0.545 | 0.292 | 0.000
1.3 | 1.000 | 1.000 | 1.000 | 1.000 | 0.997 | 0.975 | 0.906 | 0.773 | 0.569 | 0.307 | 0.000
1.4 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.980 | 0.920 | 0.794 | 0.592 | 0.323 | 0.000
1.5 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.985 | 0.932 | 0.812 | 0.614 | 0.339 | 0.000
1.6 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.988 | 0.942 | 0.829 | 0.635 | 0.354 | 0.000
1.7 | 1.000 { 1.000 | 1.000 | 1.000 | 1.000 | 0.991 | 0.950 | 0.845 | 0.653 | 0.369 | 0.000
1.8 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.993 | 0.957 | 0.859 | 0.671 | 0.384 | 0.000
1.9 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 0.964 | 0.872 | 0.688 | 0.397 | 0.000

2.0 | 1.000 | 1.000 | 1.000 [ 1.000 | 1.000 | 0.996 | 0.969 | 0.884 | 0.705 | 0.411 | 0.000

4. In order to facilitate the understanding of the preparation of the
final table giving the values of f(z), I shall give, in table 2, the values of
the Poisson function

Mt
!
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for negative values of m. Incidentally, the values of f(z) can be obtained
in a different manner by means of a table giving the values of the said
function for z being positive. In this case it is necessary, as previously
mentioned, to add up all the terms placed along oblique lines, or diago-
nals; then, the number of terms to be considered is infinite, but most
often convergence will be very rapid.

By multiplication by 1 — a is thus obtained directly, not the prob-
ability f(z) of an inferior delay in answering, but the probability 1 — f(z)
of a superior delay for a fixed value of z. This is easily proved by means

is equal to

1
of a theorem by J. L. W. V. Jensen*), according to which 1

—

the sums of the terms situated along oblique lines in a complete Poisson
table, i. e. one comprising positive as well as negative values of m. As to
denotations, I have here used a, the symbol employed by Mr. Johannsen
who was the first to discuss theoretically the important question of delays
in answering®*).

For great values of z, an approximated (asymptotic) formula may be
employed which simplifies the calculation:

1—a —_2z
e )

S=1—f) =

where the ﬁgufes a and o’ (@ << 1 < o) are bound by the relation

It should be remembered that it is an essential presupposition for the
results stated above that the calls be of constant duration.

*) Acta mathematica, XXVI, 1902, p. 309.
*%) The Post Office Electrical Engmeers Journal, October, 1910, p. 244, and January,
1911, p. 303.
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SOLUTION OF SOME PROBLEMS IN THE THEORY OF
PROBABILITIES OF SIGNIFICANCE IN AUTOMATIC
TELEPHONE EXCHANGES

First published in ‘“Elektroteknikeren” Vol. 13 (1917) p. 5.

Summary. — Sections 1—7. First main problem: Systems without
waiting arrangements. (Two different presuppositions.) Accompanied by
Tables 1, 2, 3. Sections 8—9. Second main problem: Systems with waiting
arrangement. (Two different presuppositions.) Accompanied by Tables
4,5,6,7. Sections 10—12. Approximative methods, references, conclusion.
Accompanied by Table 8.

1. First Main Problem. — Let us suppose that an automatic system
is arranged in such a manner that there are provided x lines to take a
certain number of subscribers. These z lines are said to be co-operative,
or to constitute a “group” (or “team’). It is presupposed that all the lines
disengaged are accessible. At present we will only speak of systems with-
out waiting arrangements, 5. e. systems in which the subscriber, when he
finds that all x lines are engaged, replaces the receiver, and does not
try to get connection again immediately. The probability of thus finding
the lines engaged is called the loss, or degree of hindrance, and is here
designated by B. With respect to the length of the conversations (some-
times called the holding-time), we will (for the present) suppose that it
is constant, and it will be convenient to consider this quantity equal to 1
(““the natural time-unit’’). With respect to the subscribers’ calls, it is as-
sumed that they are distributed quite accidentally throughout the time in
question (e. g. that part of the day when the heaviest traffic usually
occurs). This presupposition does not only imply that there must not be
points of time within the period of time in consideration at which it may
be expected in advance that there will be exceptionally many or few
calls, but also that the calls must be mutually independent. In practice



Solution of some Problems in the Theory of Probabilities. 139

these presuppositions will, with great approximation, be fulfilled. The
average number of calls per time-unit (intensity of traffic) is called y. The
ratio of y to , 4. e. the traffic intensity per line, is designed by o; it is
often called the efficiency of the group. We have to determine B (as a
function of ¥ and z). The exact expression for this is as follows:

yx
P
B= W

y oy y*
1+T!+ 21+"'+&T

as proved in the following sections (2—5).

2. The following proof may be characterised as belonging to the ma-
thematical statistics, and is founded on the theory of “statistical equilib-
rium” — a conception which is of great value in solving certain classes
of problems in the theory of probabilities. Let us consider a very great
number of simultaneously operating groups of lines of the previously
described kind (number of lines x, traffic intensity y). If we examine a
separate group at a definite moment, we may describe its momentary
condition by stating, firstly, how many of the z lines (0, 1, 2, .... z) are
engaged; and secondly, how much there is left of each of the conver-
sations in question. If we examine the same group a short time dt later,
we will find that certain changes of two different kinds have ta.ken' place.
On the one hand, the conversations which were nearly finished will now
be over, and the others have become a little older. On the other hand,
new calls may have been made, which, however, will have significance
only if not all the lines are engaged. (The probability of & new call during
the short time di is ydi.) We assume that we examine in this manner not
only one group, but a very great number of groups, both with respect
to the momentary condition and the manner in which this alters. The
state, of which we thus can get an accurate description, if we use a suf-
ficiently large material, has the characteristic property that, notwith-
standing the aforesaid individual alterations, it maintains itself, and,
when once begun, remains unaltered, since the alterations of the different
kinds balance each other. This property is called ‘“‘statistic equilibrium”.

3. Temporarily as a postulate, we will now set forth the following
description of the state of statistical equilibrium. A

The probabilities that 0, 1, 2, 3, .... z lines are engaged are respec-
tively—



140 A. K. Erlang:

. 1 :
7 ;5’0:1 y Z\/Z . T
+‘i‘!-‘|"a+ S +’F
< 1
M T y yg . y:u
1+ “‘+”_‘+--'+“.*’
1! !
¥ )
. 5 (2)
2 = 2 z
Yy vy Y
+i+?!+ +};T
yrc
z!
Sm:l U S
11 2! ' -zl

where the sum of all the probabilities is 1, as it should be. And we fur-
ther postulate for each of the x+1 aforesaid special conditions, that
the still remaining parts of the current conversations (‘‘remainders’)
will vary quite accidentally between the limits 0 and 1, so that no spe-
cial value or combination of values is more probable than the others.

4. We shall prove that the thus described general state is in statistical
equilibrium. For that purpose we must keep account of the fluctuations
(increase and decrease), during the time d¢, for the z -+ 1 different states,
beginning with the first two. The transition from the first state S, to the

second state S, amounts to
Sy ydt,

while the transition from the second S, to the first §, amounts to
Sy - dt.

These quantities are according to (3) equal and thus cancel each othel
Furthermore, the amount of trans1t1on from S to 8, is:

Sl Jdtﬁ

and, conversely, the transition from S , to 8§y is:
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Sy 2-di,

which two quantities also are equal and cancel each obher
Finally, we have
Sm—l A dt
and

S, - x-di,

€T

. which also cancel each other. The result is that the reciprocal changes
which take place between the x + 1 different states during the time dt,
compensate each other, so that the distribution remains unaltered. We
still have to prove that neither will there be any alterations in the dis-
tribution of the magnitude of the remainders, 7. e. that the decrease and
increase, also in this respect, compensate each other.

5. Let us consider the cases in which the number of current conver-
sations is n, and among. these cages, more especially those in which the
magnitudes of the n remainders lie, respectively, between the following
limits: ’

: t, and ¢; + Al,

t, and ty, + 4,,

t, and ¢, + 4,,.

The probability of this is (according to Section 3):
4,-dy-dy ... 4,8,

During the time d¢ there may occur, in four different ways, both increase
and decrease.
Firstly, transition to 8, .,; namely, if a call arrives; the probablhty of
this will be:
411-412-413 oo 4,08,y - di.

Secondly, transition from S, ,,; namely, if one among the n 41
current conversations finishes during the time df, and, thereafter, the
n remainders lie between the above settled limits. The corresponding
probability is: :
d,-dy-dy...4,(n +1)8, - dt,

which is equal to the preceding one. A
"Thirdly, transition from S, itself; namely, if, among the n remainders,
the n — 1 lie between the settled limits, and the one lies just below the
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lower limit in question, at a distance shorter than di. The probability for
this will be:

o
A, -4, 4y ... An<——~—l-
4,

1 1
AZ—I— ...+Z)Sn ')dt.

Fourthly, transition to S, itself; namely, if, among the n remainders,
the n — 1 lie between the settled limits, and the one lies just below the
upper limit, at a distance shorter than d¢. The probabﬂlty of this eventu-
ality is obviously equal to the preceding one.

Thus, there is a balance. So it is proved by this that there will be
statistical equilibrium. On the other hand, any other supposition than
the one set forth in Section 3 will at once be seen to be inconsistent with
statistic equilibrium. The formulee in Section 3 are now proved, and thereby
the proposition in Section 1 is also proved. '

6. The above presupposition, that all conversations are of equal length,
applies with. great approximation to trunk-line conversations, but not,
of course, to the usual local conversations. Now, a statistic investigation,
which I have undertaken, shows that the duration of these conversations
is ruled by a simple law of distribution, which may be expressed as fol-
lows: ‘ ,

The probability that the duration will exceed a certain time = is equal to

: A — ,

when the average duration is taken to be equal to 1, as before. Or, in
other words, the probability that a conversation which has been pro-
ceeding for some time is nearly finished, is quite independent of the length
of the time which bas already elapsed. The average number of conver-
sations finished during the time di (per current conversation) will be
equal to di. It is now easy to see that we must arrive at the same ex-
pression (1) for B as under the former presupposition, only that the proof
becomes somewhat simpler, because it is necessary to take into account
only the number of current conversations without paying any attention
to their age. (It will appear from the following that the two aforesaid
presuppositions do not lead to the same result in all problems.)

7. In Table 1 are shown some numerical values of the “loss” B as
dependent of  and y (or «), and as given by the proposed theory.

In Table 2 the results of formula (1) are presented in another form,
which is probably the one that is most useful in practice; z and B are
here entry numbers, and the table gives y as a function of x and B.

In Table 3a only the first and second lines treat of systems with, ‘“‘pure’
groups (to which formula (1) applies). The values given in the third line
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Table 1.
Values of the Loss, or Grade of Service, B. (Formula (1), Section 1).

@ a Y B

1 0.1 0.1 0.091
1 0.2 0.2 0.167
2 0.1 0.2 0.016
2 0.2 0.4 0.054
2 0.3 0.6 0.101
3 0.1 0.3 0.003
3 0.2 0.6 0.020
3 0.3 0.9 0.050
3 0.4 1.2 0.090
4 0.1 0.4 0.001
4 0.2 0.8 0.008
4 0.3 1.2 0.026
4 0.4 1.6 0.056
5 0.2 1.0 0.003
5 0.3 1.5 0.014
5 0.4 2.0 0.037
5 0.5 2.5 0.070
6 0.2 1.2 0.001
6 0.3 1.8 0.008
6 0.4 2.4 0.024
6 0.5 3.0 0.052
8 0.3 2.4 0.002
8 0.4 3.2 0.011
8 0.5 4.0 0.030
10 0.3 3 0.001
10 0.4 4 0.005
10 0.5 5 0.018
10 0.6 6 0.043
10 0.7 7 0.079
20 0.4 8 0.000
20 0.5 10 0.002
20 0.6 12 0.010
20 0.7 14 0.030
30 0.5 15 0.000
30 0.6 18 0.003
30 0.7 21 0.014
40 0.5 20 0.000
40 0.6 24 0.001
40 0.7 28 0.007

143
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Table 2.

Values of the intensity of traffic, ¥, as a function of
the number of lines, x, for a loss of 1, 2, 3, 494,

:v 1% 2 %40 3 %0 4 %40
1 0.001 £ 0.002 0.003 0.004
2 0.046 0.065 0.081 0.094
3 0.19 0.25 0.29 0.32
4 0.44 0.53 0.60 0.66
5 0.76 0.90 0.99 1.07
6 1.15 1.33 1.45 1.54
7 1.58 1.80 1.95 2.06
8 2.05 2.31 2.48 2.62
9 2.56 2.85 3.05 3.21
10 " 3.09 3.43 3.65 3.82
11 3.65 4.02 4.26 4.45
12 4.23 4.64 4.90 5.11
13 4.83 5.27 5.56 5.78
14 5.45 5.92 6.23 6.47
15 6.08 6.58 6.91 7.17
16 6.72 7.26 7.61 7.88
17 7.38 7.95 8.32 8.60
18 8.05 8.64 9.03 9.33
19 8.72 9.35 9.76 10.07
20 9.41 10.07 10.50 10.82
25 12.97 13.76 14.28 14.67
30 16.68 17.61 18.20 18.66
35 20.52 21.56 29.93 22.75
40 24.44 25.6 26.3 26.9
45 28.45 29.7 30.5 31.1
50 32.5 33.9 34.8 35.4
55 36.6 38.1 39.0 39.8
60 40.8 42.3 43.4 44.1
65 45.0 46.6 47.7 48.5
70 49.2 51.0 52.1 53.0
75 53.5 55.3 56.5 57.4
80 57.8 59.7 61.0 61.9
85 62.1 64.1 65.4 66.4
90 66.5 68.6 69.9 70.9
95 70.8 73.0 74.4 75.4
100 75.2 71.5 78.9 80.0
105 79.6 82.0 83.4 84.6
110 84.1 86.4 88.0 89.2
115 88.5 \ 91.0 92.5 93.7
120 93.0 95.5 97.1 98.4
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Table 3 a.
The “Loss” (in /o) by 8 different arrangements (one with “Grading and Interconnecting”).

y 3 4 5 6 7 8 9 10 11 12

1) = 10, with 10

contacts ...... 08 | 53 | 184|431 — | — | — — — —
1) z = 18, with 18
contacts ...... — | — | — | — | 02] 09|29 7.1 | 14.8| 26.5
3),x = 18, with 10
contacts ...... — | — | — | — | 11 {38174 ]151]|26.8]|42.8
Table 3 b. »
Values of o and y by different arrangements for a loss of 1 9/,.
a Y
2 = 10; 10 contacts .............. 0.31 :3».1
r=18; 10 - ... ... . 0.38 6.9
x=o003; 10 - ... 0.50 —

correspond to a different system, in which a special arrangement, the
so-called “‘grading and interconnecting”, is used. We may describe this
arrangement as follows: ,

The number of contacts of the selectors (here ten) is less than the
number of lines (here eighteen) in the “group”. Thus each call searches
not all eighteen but only ten lines. It is hereby presupposed (for the sake
of simplicity) that the ten lines are each time accidentally chosen, out
of the eighteen, and that they are tested one after the other according
to an arbitrary selection. The method of calculation here to be used may
be considered as a natural extension of the method which leads to for-
mula (1), but it is, of course, a little more complicated. A few results of
this kind of calculating are given, in the two Tables 3 a and 3 b. Finally, I
want to point out that the systems for “grading and interconnecting”’
being used in practice at present, which I, however, do not know in de-
tail, are said to deviate a little from the description given here, and,
therefore, it may be expected that they will give somewhat less favour-
able results. )

8. Second Main Problem. — The problem to be considered now con-
cerns systems with waiting arrangements. Here, the problem to be solved
is determining the probability S (> n) of a waiting time greater than
an arbitrary number n, greater than or equal to zero. The last case is
the one which is most frequently asked for. In the same manner we

10
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define S (< n) where S (< n) + S (> n) = 1. Furthermore, we may ask
about the average waiting time M. We shall answer these questions in
the following. Here, too, we may begin by assuming that the duration
of the conversations is constant and equal to 1. The accurate treatment
of this case gives rise to rather difficult calculations, which, however, are
unavoidable. Among other things, we find that we cannot use the same
formula for § (> n) for all values of n, but we must distinguish between
the various successive ‘“‘periods’, or spaces of time of the length 1. In
practice, however, the first period will, as a rule, be the most important.
T shall content myself by giving, without proof, the necessary formule
for the cases of # = 1, 2, and 3, and then (chiefly for the purpose of show-
ing the possibility of carrying out the practical calculation) the corre-
sponding numerical results, also for z =1, 2, 3. Formule and results
for z = 1 have already been published in an article in “Nyt Tidsskrift
for Mathematik”, B, 20, 1909. The formuls for greater values of z, e. g.
x = 10, = 20 are quite analogous to those given here.

COLLECTION OF FORMULAE

Presupposition: the duration of conversations is constant and equal to 1
Denotations:

x is the number of co-operating lines
y is the intensity of traffic (average number of calls during unit of time)

S (> m) is the probability of a waiting time greater than =
8 (< n) is the probability of a waiting time less than, or equal to n
ny =2
2—y =1u
z— 2y = v, et cetera.
M = the average waiting time.
I. Formulae for the case of z = 1:
a) First period, 0<n<l:
S(< In’) = a’O : ez;
where Gy =1—a
b) Second period, 1 <mn < 2:
S (< n) = (by—bou) €
by = aye¥
by =0,

where k {
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c¢) Third period, 2<n <3:
S(<n) =(c,—ow + dog?) e

[ ¢y = (by—bey) ¢
where 1y =b,
l co = by
et cetera.
1 1 a
M= ((L=by) (1 —0) + (1 —dg) +...) = -
Y 2 l—a

II. Formulae for the case of x — 2:
a) First period, 0<n<l:
S(<n) = (a,— ag) e

. a
a, = 2 (1l —a) -
where B
Gy =—2(1—a) "
B denoting the negative root of the equation
Bem B = _—qgee,

b) Second period, 1 <n < 2:
S (< n) — (bs —byu + 3 byu? — & byu?) e*

I by = (a1 —awy) ¢

' b, = aye¥
where 2 0
b, =a,
by =a,

¢) Third period, 2 < n < 3:

S(<n) = (cs—c@w + b e —Eow® + o C1ot — 18, cg0%) €

65 = (bg— by ++ 0> —+ boy?) e
Cy = (by—byy + Fboy?) e
where 03 = by
Cs = by
¢, = by
¢y = by
et cetera.

M= S () (1—b) 4 (1=t (1—a5) - (—dg) - () ...}

<
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III. Formulae for the case of x = 3
a) First period, 0 <n<<1l: '’

S(<n) = (a,—az + 5 ap?) &

" R P —
where 2 @y =—3(1—a) (ai_(ﬁ_)(_%%_;)
By
= 3(l—a)— T
¢ R Py
as ‘B-g"‘ﬁ:a.e—a_k

oy.-e—yza.e_a.k2

We understand by & a complex value of f/ L.

b) Second period, 1 <n < 2:
§ (< m) = (by— by + } by —+ byu® + 7z byut — k3 byd) e

by = (@a—ayy + ¥ agy?) ¢’
by, = (@, —agy) ¢’
where by = o
by = ay
by = a,
by = ay

¢) Third period, 2 <= < 3:
| S(<n) =

1 2, 1 1. L 1 1 1
(03—07’0—|—§06’00'— §Cs03 3 1C 0 —T355Cg0° F7ige v — 551 06V 155y icov®)e’,

ey = (bs—bgy + T by — & byy® + T byt — 1 bey®) e’
¢; = (by—bgy + 3 boy? — 4 by 2l boyt) ¢
cg = (bg— by + 3 b.y* — T boy®) ¢
c5 = bs
where 1 g =0b,
¢y = by
cy = by
¢, =by
Cp = bo,

et cetera.

M=;((1—b3>+<1—b4>+(1—bs)+<1—c6)+<1—c7>+(1—c8)+ L)
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Table 4. (z = 1).
N 00 [ 01 | 02 | 03| 04 | 05| 06 | 07| 08 | 09 | 10
0.00 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0.05 | 0.950 | 0.955 | 0.960 | 0.964 | 0.969 | 0.974 | 0.979 | 0.984 | 0.989 | 0.994 | 0.999
0.10 | 0.900 | 0.909 | 0.918 | 0.927 | 0.937 | 0.946 | 0.956 | 0.965 | 0.975 | 0.985 | 0.995
0.15 | 0.850 | 0.863 | 0.876 | 0.889 | 0.903 | 0.916 | 0.930 | 0.944 | 0.958 | 0.973 | 0.988
0.20 | 0.800 | 0.816 | 0.833 | 0.849 | 0.867 | 0.884 | 0.902 | 0.920 | 0.939 | 0.958 | 0.977
0.25 | 0.750 | 0.769 | 0.788 { 0.808 | 0.829 | 0.850 | 0.871 | 0.893 | 0.916 | 0.939 | 0.963
0.30 | 0.700 | 0.721 | 0.743 | 0.766 | 0.789 | 0.813 | 0.838 | 0.864 | 0.890 | 0.917 | 0.945 |
0.35 | 0.650 | 0.673 | 0.697 | 0.722 | 0.748 | 0.774 | 0.802 | 0.830 | 0.860 | 0.891 | 0.922 |
0.40 | 0.600 | 0.624 | 0.650 | 0.677 | 0.704 | 0.733 | 0.763 | 0.794 | 0.826 | 0.860 | 0.895 |
. 0.45 | 0.550 | 0.575 | 0.602 | 0.630 | 0.658 | 0.689 | 0.720 | 0.754 | 0.788 | 0.825 | 0.863 |
0.50 | 0.500 | 0.526 | 0.553 | 0.581 | 0.611 | 0.642 | 0.675 | 0.710 | 0.746 | 0.784 | 0.824 |
0.55 | 0.450 | 0.475 |0.502 | 0.581 | 0.561 | 0.592 | 0.626 | 0.661 | 0.699 | 0.738 | 0.780
0.60 | 0.400 | 0.425 | 0.451 | 0.479 | 0.508 | 0.540 | 0.573 | 0.609 | 0.646 | 0.686 | 0.729
0.65 | 0.350 | 0.374 | 0.399 | 0.425 | 0.454 | 0.484 | 0.517 | 0.552 | 0.589 | 0.628 | 0.670
0.70 | 0.300 | 0.322 | 0.345 | 0.370 | 0.397 | 0.426 | 0.457 | 0.490 | 0.525 | 0.563 | 0.604
0.75 | 0.250 | 0.269 | 0.290 | 0.313 | 0.337 | 0.364 | 0.392 | 0.423 | 0.456 | 0.491 | 0.529
0.80 | 0.200 | 0.217 | 0.235 | 0.254 | 0.275 | 0.298 | 0.323 | 0.350 | 0.379 | 0.411 | 0.445
0.85 | 0.150 [ 0.163 | 0.178 | 0.194 | 0.211 | 0.229 | 0.250 | 0.272 | 0.296 | 0.322 | 0.351
0.90 | 0.100 | 0.109 | 0.120 | 0.131 | 0.143 | 0.157 | 0.172 | 0.188 | 0.205 | 0.225 | 0.246
0.95 | 0.050 | 0.055 | 0.060 | 0.066 | 0.073 | 0.080 | 0.088 | 0.097 | 0.107 | 0.118 | 0.129
1.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Table 5. (z=2).

N 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 0.9 [ 1.0
0.00 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0.05 | 0.995 | 0.996 | 0.997 | 0.998 | 0.998 | 0.999 | 0.999 | 1.000 | 1.000 | 1.000'| 1.000
0.10 | 0.982 | 0.985 | 0.988 | 0.991 | 0.993 | 0.995 | 0.997 | 0.998 | 0.999 | 1.000 | 1.000
0.15 | 0.962 | 0.968 | 0.974 | 0.980 | 0.985 | 0.989 | 0.993 | 0.996 | 0.998 | 0.999 | 1.000
0.20 | 0.936 | 0.946 | 0.956 | 0.965 | 0.973 | 0.980 | 0.987 | 0.992 | 0.995 | 0.998 | 0.999
0.25 | 0.903 | 0.918 | 0.933 | 0.946 | 0.958 | 0.969 | 0.978 | 0.986 | 0.992 | 0.996 | 0.998
0.30 | 0.866 | 0.886 | 0.905 | 0.922 | 0.939 | 0.953 | 0.967 | 0.978 | 0.986 | 0.992 | 0.995
0.35 | 0.825 | 0.849 | 0.872 | 0.895 | 0.915 | 0.935 | 0.952 | 0.966 | 0.978 | 0.987 | 0.991
0.40 | 0.779 | 0.808 | 0.835 | 0.862 | 0.888 | 0.911 | 0.933 | 0.952 | 0.967 | 0.978 | 0.985
0.45 | 0.730 | 0.762 | 0.794 | 0.825 | 0.855 | 0.883 | 0.909 | 0.932 | 0.951 | 0.966 | 0.975
0.50 | 0.677 | 0.712 | 0.748 | 0.783 | 0.817 | 0.849 | 0.880 | 0.907 | 0.931 | 0.949 | 0.961
0.55 | 0.621 | 0.658 | 0.697 | 0.735 | 0.773 | 0.809 | 0.844 | 0.875 | 0.903 | 0.925 | 0.941
0.60 | 0.561 | 0.601 | 0.641 | 0.681 | 0.722 | 0.762 | 0.800 | 0.836 | 0.868 | 0.894 | 0.913
0.65 | 0.499 | 0.539 | 0.580 | 0.622 | 0.664 | 0.706 | 0.748 | 0.787 | 0.822 | 0.852 | 0.875
0.70 | 0.435 | 0.473 | 0.514 | 0.556 | 0.599 | 0.642 | 0.685 | 0.726 | 0.764 | 0.798 | 0.824
0.75 | 0.368 | 0.404 | 0.442 | 0.483 | 0.525 | 0.568 | 0.611 | 0.653 | 0.692 | 0.728 | 0.757
0.80 | 0.298 | 0.331 | 0.366 | 0.403 | 0.442 | 0.482 | 0.523 | 0.564 | 0.603 | 0.639 | 0.669
0.85 | 0.227 | 0.254 | 0.283 | 0.315 | 0.348 | 0.384 | 0.420 | 0.457 | 0.493 | 0.527 | 0.556
0.90 | 0.153 | 0.173 | 0.195 | 0.219 | 0.244 | 0.272 | 0.300 | 0.330 | 0.359 | 0.387 | 0.412
0.95 | 0.077 | 0.088 | 0.101 | 0.114 | 0.129 | 0.144 | 0.161 | 0.179 | 0.196 | 0.214 | 0.230
1.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
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Table 6. (x=3).

a0 0.0 ‘ 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 1.0
0.00 :| 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0.05 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
-0:10 | | 0.996 | 0.997 | 0.998 | 0.999 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0.15 | 0.989 | 0.992 | 0.994 | 0.996 | 0.997 | 0.998 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000
0.20 | 0.976 | 0.982 | 0.987 | 0.991 | 0.994 | 0.996 | 0.998 | 0.999 | 1.000 | 1.000 | 1.000
0.25 | 0.958 | 0.967 | 0.975 | 0.983 | 0.988 | 0.993 | 0.996 | 0.998 | 0.999 | 1.000 | 1.000
0:30 | 0.933 | 0.948 | 0.960 | 0.971 | 0.980 | 0.987 | 0.992 | 0.996 | 0.998 | 0.999 | 0.999
0.35 | 0.903 | 0.923 | 0.940 | 0.956 | 0.969 | 0.979 | 0.987 | 0.993 | 0.996 | 0.998 [ 0.999
0.40 | 0.866 [ 0.892 | 0.915 | 0.936 | 0.953 | 0.968 | 0.980 | 0.988 | 0.993 | 0.996 | 0.998
0.45 | 0.823 | 0.855 | 0.884 | 0.910 | 0.934 | 0.953 | 0.969 | 0.980 | 0.988 | 0.993 | 0.995
0.50 | 0.775 | 0.812 | 0.847 | 0.879 | 0.908 | 0.933 | 0.953 | 0.969 | 0.980 | 0.987 | 0.991
0.55 | 0.720 | 0.762 | 0.803 | 0.841 | 0.876 | 0.906 | 0.932 | 0.952 | 0.967 | 0.977 | 0.983
0.60 | 0.660 | 0.706 | 0.752 | 0.795 | 0.835 | 0.872 | 0.903 | 0.929 | 0.948 | 0.962 | 0.971
0.65 | 0.595 | 0.644 | 0.693 | 0.740 | 0.786 | 0.827 | 0.864 | 0.895 | 0.920 | 0.938 | 0.951
0.70 | 0.524 | 0.574 | 0.625 | 0.676 | 0.725 | 0.771 | 0.813 | 0.849 | 0.879 | 0.902 | 0.919
0.75 | 0.448 | 0.497 | 0.548 | 0.600 | 0.651 | 0.700 | 0.746 | 0.787 | 0.821 | 0.849 | 0.871
0.80 | 0.367 | 0.413 | 0.461 | 0.511 | 0.562 | 0.611 | 0.659 | 0.702 | 0.740 | 0.773 | 0.799
0.85 | 0.282 | 0.322 | 0.364 | 0.409 | 0.455 | 0.501 | 0.547 | 0.590 | 0.629 | 0.663 | 0.693
0.90 [0.192 | 0.222 | 0.255 | 0.291 | 0.328 | 0.366 | 0.405 | 0.442 | 0.477 | 0.509 | 0.538
0.95 | 0.098 | 0.115 | 0.134 | 0.155 | 0.177 | 0.201 | 0.225 | 0.249 | 0.273 | 0.295 | 0.316
1.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

9. There still remains the problem of investigating the magnitude of
the waiting times in systems with waiting arrangement under the second
presupposition, namely, that the durations of the conversations vary in
the manner already described in Section 6...

Here we find, without difficulty, the following two formulee:

where

Cc =

S(>0)=c¢

S(>n) =c-e @V

y .y
1+TT+2_!+

+

1

(x'f n!

T

Y

X

z! x—y

(4)

(5)

while 2 and y have the same significance as before, and the average

duration, of
values of n

&
= 0.

conversation is equal to 1. The formula is exact for all
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Table 7. - . . ,
Systems with Waiting Arrangement (Second Presupposition). Values of S (>n) and M.
© a y S(>0) |S(>0.1)|S(>0.2) M
1 0.1 0.1 0.100. 0.091 0.084 0.111
1 0.2 0.2 0.200 0.185 0.170 0.250
2 0.1 0.2 0.018 0.015 0.013 0.010
2 0.2 0.4 0.067 - 0.057 0.049 0.042
2 0.3 0.6 0.138 0.120 0.104 0.099
3 0.1 0.3 0.004 0.003 0.002 0.001
3 0.2 0.6 0.024 0.019 0.015 0.010
3 0.3 0.9 0.070 0.057 0.046 0.033
3 0.4 1.2 0.141 0.118 0.099 0.078
4 0.1 0.4 0.001 0.001 0.000 0.000
4 0.2 0.8 0.010 0.007 0.005 “0.003
4 0.3 1.2 0.037 0.028 0.022 0.013
4 0.4 1.6 0.091 0.072 0.056 . . 0.038 .
5 0.2 1.0 0.004 0.003 0.002 - 0.001
5 0.3 1.5 0.020 0.014 0.010 0.006
5 0.4 2.0 0.060 0.044 0.033 - 0.020
5 0.5 2.5 0.130 0.102 0.079 0.052
6 0.2 1.2 0.002 0.001 0.001 0.000
6 0.3 1.8 0.011 0.007 0.005 0.003
6 04 2.4 0.040 0.026 0.018 0.011
6 0.5 3.0 0.099 0.073 0.054 0.033
8 0.3 2.4 0.004 0.002 0.001 0.001
8 0.4 3.2 0.018 0.011 0.007 0.004
8 0.5 4.0 0.059 0.040 0.026 0.015
10 0.3 3 0.001 0.001 0.000 0.000
10 0.4 4 0.009 0.005 0.003 0.001
10 0.5 5 0.036 0.022 0.013 0.007
10 0.6 6 0.102. 0.068 0.046 0.026
10 0.7 7 0.222 0.165 0.122 0.074
20 0.4 8 0.000 0.000 0.000 0.000
20 0.5 10 0.004 -.0.001 0.001 0.000
20 0.6 12 0.024 0.011 0.005 0.003
20 0.7 14 0.094 0.052 -0.028 0.016
22 0.5 11.0 0.002 0.001 0.000 0.000
22 0.6 13.2 0.018 0.007 0.003 0.002
22 0.7 15.4 0.081 0.042 0.022 0.012
30 0.5 ‘15 0.000 0.000 0.000 0.000
30 0.6 18 0.007 0.002 0.001 0.001
30 0.7 21 0.044 0.018 0.007 0.005
40 0.5 20 0.000 0.000 0.000 0.000
40 0.6 24 0.002 0.000 0.000 0.000
40 0.7 28 0.022 0.007 0.002 0.002
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For the average waiting time we get the formula:

M- o

(6)
rT—Y

The numerical calculation causes no special difficulty. It ought, perhaps,
to be pointed out that, both here and in Section 8, it is presupposed that
the waiting calls are despatched in the order in which they have been
received. If this does not take place in practice, it will, of course, have a
slight effect upon the value of S (> n), but not at all on the value of M,
neither on § (> 0).

10. Approximative Formule. — The exact formule given above are
throughout so convenient, that there is hardly any need of approximative
formulee. This does not, however, apply to the formulse which concern
the second main problem, first presupposition. Therefore, it may be
worth while to mention a couple of approximative methods which quickly
lead to a serviceable result, at least in such cases as have the greatest
practical significance.

One of these methods has already been used by me, at the request of
- Mr. P. V. Christensen, Assistant Chief Engineer to the Copenhagen Tele-
phone Company, for caleulating the explicit tables given in the first
pages of his fundamental work, “The Number of Selectors in Automatic
Telephone Systems’ (published in the Post Office Electrical Engineers’
Journal, October, 1914, p. 271; also in “Elektroteknikeren’, 1913, p. 207;
“E. T.Z.”, 1913, p. 1314).

Since the method used has not been described in full, I shall here say
a few words about the same. The probability of just x calls being origi-
nated during a period of time for which the average number is y, is, as
well known, under the usual presuppositions (Section 1):

o
x!

The mathematical theorem here used is due to S. D. Poisson (“‘Re-
cherches sur la probabilité, etc.”’, 1835), and has later been studied by
L. v. Bortkewstsch (‘“Das Gesetz der kleinen Zahlen’, 1898). The function
has been tabulated by the latter (loc. cit.), and later by H. E. Soper
(“Biometrica”, vol. X, 1914; also in K. Pearson ‘“Tables for Statisticians,
ete.”, 1914).

Thus the probability of # or more calls during the mentioned period

of time is:
_ ya: yx+1 . yn:—l—z
P 7 —y v J
T T e T wron T

(7)
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Table 8.
Values of y as a function of z, for P = 0.001 — 0.002 — 0.003 — 0.004.
T 1% 2 %/4 3 %/5 4%
1 0.001 0.002 0.003 0.004
2 0.045 0.065 0.08 0.09
3 0.19 0.24 0.28 0.31
4 0.42 0.52 0.58 0.63
5 0.73 0.86 0.95 1.02
6 1.11 1.27 1.38 1.46
7 1.52 1.72 1.85 1.95
8 1.97 2.20 2.35 2.47
9 2.45 2.72 2.89 3.02
10 2.96 - 3.25 3.45 3.60
11 3.49 3.82 4.03 4.19
12 4.04 4.41 4.62 4.81
13 4.61 5.00 5.24 5.43
14 5.19 5.61 5.87 6.07
15 5.79 6.23 6.51 6.72
16 6.40 6.86 7.16 7.38
17 7.03 7.51 7.82 8.06
18 7.66 8.17 8.49 8.74
19 8.31 8.84 9.18 9.44
20 8.96 9.51 9.87 10.14
21 9.61 10.20 10.57 10.84
22 10.28 10.89 11.27 11.56
23 10.96 1159 11.98 12.28
24 11.65 12.29 12.70 13.01
25 12.34 13.00 13.42 13.74
30 15.87 16.6 17.1 17.4
35 19.5 20.4 20.9 21.3
40 23.5 24.2 24.8 25.2
45 27.1 28.1 28.7 29.2
50 30.9 32.0 32.7 33.2
55 34.9 36.0 36.8 37.3
60 38.9 40.1 40.9 41.4
65 43.0 44.2 45.0 45.6
70 47.0 48.3 49.2 49.8
75 51.0 524 53.3 54.0
80 55.1 56.6 57.6 58.3
85 59.3 60.9 61.8 62.5
90 63.5 65.1 66.1 66.9
95 67.7 69.3 70.4 71.1
100 71.9 73.6 74.7 75.5
105 76.2 77.9 79.0 79.8
110 80.4 82.2 83.3 84.2
115 84.7 86.6 87.7 88.5
120 89.0 90.9 92.1 93.0
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It will then be seen that P, in many cases, viz. when ¥ is not unpropor-
tionally great, will be a good approximate value for the fraction of the
calls which will find all the lines engaged (or for “the probability of not
getiting through”). Thus P in-the case of exchanges without waiting
arrangements approximates the “loss”, and here gives obviously a some-
what too great value. In exchanges with waiting arrangement P ap-
proximates the quantity S (> 0), the probability of delay, and gives
here a somewhat too small value. Or, if it is the fraction named above
which is given beforehand, as is generally the case in practice, where
often the value 0.001 is used, the formula will show the connexion be-
tween y and z. The values of ¥ found in this manner (see Table 8) will
never deviate 5 per cent. from the correct values in systems without
waiting arrangement; never 1 per cent. in systems with waiting arrange-
ment (both presuppositions), if we take the named, frequently used value
of P = 0.001. Possible intermediate systems between the two main clas-
ses of exchanges may, of course, be treated with good results according
to the same method. .

If, in systems with waiting arrangement, we ask about the number
of waiting times beyond a certain limit n, S (> =), an extension of the
same formula may be used, y being replaced by y (1 — n). The method
is best suited for small values of n, and the error goes to the same side as
mentioned above. Furthermore, it may be mentioned in this connexion
that if we use, in the case considered, the formule following from presup-
position No. 2, instead of those based upon presupposition No. 1, the
errors thus introduced will be small, as a rule; they go, this time, in such
a direction that we get too great values for § (> 0) and 8 (> n); or, if
it is y which is sought, there will be too small values for .

11. Tt will be too lengthy to describe or mention, in this connexion,
all the systematic practical experiments and measurements (also only
partly published), which of late years have been made, partly by the
firms in question (especially, Siemens and Halske, and Western Electric
Co.), partly by others, or such purely empirical formule as have thus
been set forth. On the other hand, it would be incorrect to neglect one or
two interesting theoretical works from recent years, which directly con-
cern one of the problems treated above. In his doctor’s thesis, Mr. F.
Spiecker (“Die Abhingigkeit des erfolgreichen Fernsprechanrufes von der
Anzahl der Verbindungsorgane”, 1913), has indicated a method for de-
termining the loss in systems without waiting arrangement, which (as he
himself admits) is not quite free from errors, and which, besides, is so
complicated that it can hardly find application in practice. It should be
emphasized, however, that the results in the cases in which the author
has completed his calculations, lie very near the results of formula (1)
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given above. In the same work is also given an approximative formula,
which can best be compared with the formula for P (Section 10 above). The
difference is exclusively due to a somewhat deviating, and probably less
practical, formulation of the problem. Mr. W. H. Grinsted, in his treatise,
“A Study of Telephone Traffic Problems, etc.”” (Post Office Electrical
Engineers’ Journal, April 1915), presents a solution of the same problem.
Since this solution has, probably, by many readers as well as by the
author himself, been considered mathematically exact, it should be no-
ticed that an error has occurred in the derivation of the formula in question
and that, for this reason, the formula gives rather incorrect results. It
should be added that the treatise is a reprint of an older work from 1907
(which I have not had opportunity to examine). In spite of the faulty
results, Grinsted’s work is, however, when its time of publication is
considered, of no little merit. ,

12. In closing this article, I feel called upon to render my best thanks
to Mr. F. Johannsen, Managing Director “of the Copenhagen Telephone
Co., not only for his interest in the investigations recorded here, but also
for his energetic initiative in starting rational and scientific treatment
of many different problems in connexion with telephone traffic. I also
owe many thanks to Mr. J. L. W. V. Jensen, Engineer-in-Chief to the
same Company, for his valuable assistance especially in the treatment of
some mathematical difficulties.



3. TELEPHONE WAITING TIMES

First published in “Matematisk Tidsskrift” B, Vol. 31 (1920), p. 25.

1. Formulating the problem; how to reach the solution.

For some years, all the experts — particularly, perhaps, in Denmark —
have been aware that the application of the theory of probabilities
constitutes the only possible way of attaining fully rational methods in
telephone administration. This holds good with respect to the exploita-
tion of lines and the utilization of the work of operators, and it is especially
valid for the newest, more or less automatic telephone systems. I have
treated some of the problems of primary importance in this connexion
in an article in “Elektroteknikeren”, 1917 (and later in ‘“Elektrotech-
nische Zeitschrift””, 1918, and ‘“The Post Office Electrical Engineers’
Journal”, 1918), in which, however, I have omitted — for the sake of -
brevity — some of the proofs, and stated only the resulting formulae
and numerical expressions. I shall mention only one important problem
here, viz. that of finding the probability that the delay in answering, or
waiting time, .shall not exceed a given quantity z, expressed as a function
of z. The given quantities, then, are: — The number of available lines,
x; the duration of the call, ¢; and the intensity of traffic, y (i. . the average
number of conversations proceeding simultaneously, or, in a different
wording, the average number of calls during the time ¢. It is presup-
posed that y << x; also, that a calling subscriber who cannot be connected
at once because all z lines are occupied, will always wait — possibly in a
“queue’ with other waiting subscribers — until he gets through. The dura-
tion of the calls ¢ is here assumed to be constant; this assumption holds
good with respect to trunk calls, but is less accurate in the case of local
calls, the latter generally being of rather variable duration which gives
rise to a problem of a kind somewhat different from the one we propose:
to deal with here. For convenience, the unit of time should either be
considered equal to the duration of ealls, or it should be chosen in such
a way that there will be an average of 1 call per unit of time; the latter
method is the one preferred here, and thus ¢ = y.
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The solution of our problem can be reached, or, at least, approached
in rather different manners; as a rule, the special case of z = 1 (one line)
will be found easier to handle than the general case. For instance, a differ-
ential equation can be derived,

(o =)o+ o= () =

f(z) = 0 for all negative values of z being known in advance, it is pos-
sible, by integration of the above, to determine the variations of the
function, first from z = 0 to 2 = ¢, then from z =t to 2 = 2%, &c. The
determination of the integration constants, however, will cause diffi-
culties; everything works out smoothly only in the special case of z = 1,
as further described in my article in “Nyt Tidsskrift for Matematik”,
1909, where this case is treated in the indicated manner.
Instead, an integral equation may be employed, viz.

=] —
u® 1

J— — U
0 =\t Fu—n e
which immediately leads to a (sometimes) rather convenient numerical
solution, but hardly to an explicit mathematical solution.

In the following we shall move along a quite different path, beginning
with the introduction of a set of constants: a,, a;, @, ....a, ;; these
are functions of y, or, if you like, of a, a denoting the ratio of y to . These
constants are determined, as we shall see, by inference from some ele-

mentary considerations leading to the employment of certain infinite
. T

series, all the terms of which are values of the function ¢~V - —J—', and
X!

in a tabular representation of the function, the terms of each series
will be placed along one or another oblique line, and distributed at equal
intervals. K. Pearson’s collection of tables contains such a table, although
- for positive values of y only; a similar table comprising negative values
of y is given below in the appendix?). It should further be noted, with

T

K N
respect to the function ¢~ - i' , that its significance for the present
x!

problem, and for several other ones as well, depends on the following
important theorem, the mathematical contents of which was found by
Poisson: The probability of an arbitrary number of calls (z) being orig-
inated during an interval of time with an average number of calls ¥,

) This table is omitted in the present reprint, as it is identical with Table 2, p. 137,
to which the reader is referred. )
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is equal to €% l' I give a simple proof of this theorem in the appen-

dix- below. .

In some cases, the determination of the constants ag, a1, @y .... a, 4
in the manner indicated is very useful; in other cases, such as when « is
great (nearly 1), it is very unpractical, however, as the series then are
slowly convergent. We shall therefore also give the determination of
the constants in a different and more aesthetic form. We introduce a set
of auxiliary terms, most often imaginary, B, y, ... ., their total number
being z when «a is included; they are determined by means of a certain
transcendental equation in which they are roots. By using a theorem set
forth by Mr. J. L. W. V. Jensen, Telephone Engineer-m-Chief, Ph. D.,
the infinite series mentioned can then be summed. The solution of our
problem will then appear in a simple and convenient form.

In the following I shall pass in view the two special cases explicitly
and uniformly, first = 1, 4. e. 1 line (in sections 2—6), then z = 2,
i. e. 2 lines (in sections 7 — 11); consequently, I have considered it
unnecessary to account for the proof of the general case expressly.

2. The simpler case of x = 1; definition of a,.

We understand by @, the probability that there will be no waiting
time after an arbitrary call. Here we have immediately ay, = 1 — q, a,
being the probability that the line is unoccupied, and a being the prob-
ability that it is occupied.

3. The table and the oblique lines.

T

When z and y both are variable, the table of the Poisson function ¢~¥ l‘
X!

will fill a plane; we may begin with placing an z-axis and a y-axis in the
plane (e. g. the z-axis downwards, and the y-axis pointing to the right),
and then inscribe each separate value of the function as near as possible
to the point determined by the coordinates x and y. Incidentally, we
shall have to deal with integral values of x only; and if desired, the nega-
tive values of  can be omitted, the function here being 0. Now, we imagine
a certain set of oblique lines being laid in the plane, all having the direc-
tional coefficient «. On each line we select a number of equally spaced
points, each interval corresponding to an increase of 1 in the abscissa,
and of a in the ordinate. The sum of the functional values under con-
sideration is denoted by the letter o, to which is added as indices the
coordinates of one of the points, the situation of all the other points being
also given hereby. If this point is situated on the x axis, however, the
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second index — which is 0 — may be omitted, for the sake of brevity.
We permit these series to go on infinitely in both directions or, if you
choose, in the one direction, and in the other direction until the terms
automatically become equal to 0. If only those of the terms corresponding
to points with positive ordinates be included in the series, the sum is
denoted by s; if only the other terms, viz. those corresponding to points
with negative ordinates (and 0), be included, the sum is denoted by .
In both cases are added indices, as previously mentioned. Thus, we have
always ryy b8, = 0.
' In many cases o and s are identical and » = 0, v5z. when the oblique line
intersects the negative part of the z-axis. The convergence of the series
is easily realized. ‘

4. Relations concerning a,.

Regardless of the fact that we have already found the value of a, it
will now be useful to prove the following relations:—

Gy =1—ay8, |

1—2
0 zl—aos_l,f (1—2)
where, in accordance with the foregoing,
al (2 a)?
— —2a
So =€ty Te 21

(3—4)

0 1

(Za)}

s — g 1 _I__ e—2a
—1 0' [

1!
As we shall see later, the two equations (1-—2) can be given a different
form by introducing the sums o instead of the sums s; but we will prove
them first in the above form.

The equation (1) can be proved as follows: By considering in detail
all the cases where an arbitrary call suffers a waiting time, it will be seen
that the cases can be distributed, or arranged in groups, thus:—

1) During the preceding time interval of duration ¢ (or a) there was 1 call

2) - - - - - - - 2t - were 2 calls

3) - - - - - - - 3t - - 3calls,
ete.

An infinite number of groups is obtained; considering, hoﬁever, that the
probabilities in question form a convergent series, there can be no doubt

Y
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that the aggregate probability 1-— a, sought-after really exists in the
form of a certain limit value; a similar remark could be made at several
points in the following. Care should be taken, in the arranging in groups
mentioned, that no case be placed under two different groups; to avoid
uncertainty in this respect we will decide upon always preferring the group
with the bigher number to that with the lower number. Agreement with
this is found in that, in group no. 1 above, 1 call is stated (. e., just one
call, and no more), and the following groups are in analogy with this;
but the cases which, accordingly, should be included must now be sifted
further. It is easily seen that the probability that & case really belongs
under the group where it has been placed temporarily, is identical with -
the probability that an arbitrarily chosen call will not have to suffer a
waiting time; in other words, it is equal to a,. For, if we suppose that a
case has been put, temporarily, under (e. g.) group 3, then we know
that there were 3 calls during the preceding time interval of 3 ¢; bub that
is all we know. We must then take the point of time that is 3 ¢ pre-
vious to the call and, from there, seek further baek in time; first an
interval ¢, to see whether 1 call can be found here; then an interval 2 ¢,
to see whether 2 calls can be found here; &c. We must, thus, under- -
take the same investigation — although starting from a different point
of time — as when we recently began enumerating the cases leading to

a waiting time. — Accordingly, we get
1 —a al 94 (2 a)?
ay=1-—ag|e ﬁ+6 T_I_
or, shorter, ‘ @y = 1 — @48y, q. e. d.

The equation (2) can be proved in a quite similar manner; we shall not
dwell on that, however, as equation (1) strictly speaking will suffice. By .
inserting o instead of s, the appearance of equations (1) and (2) becomes
simpler and more uniform, viz.

1 = a4, } (5—6)

1 =ay0_3.

The significance of these two- equations (their number could easily be
increased) is, for the present, that a, can be found by means of either of
them (we leave out of account that we have already found a, in a simpler
way here where 2 = 1). But they are, as a matter of fact, significant in
another respect also, which will be dealt with later.
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5. The summation of the infinile series.

The infinite series o, as employed in the above, can be summed by
means of a theorem by Jensen (Acta mathematica XXVI, 1902, p. 309,
formula 7). With slightly altered denotations, the theorem reads:

e
| E— 0! 1! 21

1 . —a,io_I_e—(aJra).w):+e~(a+2a).(a+2a)2—{—...., (7N

and it is valid for all values (real and imaginary) of o when onlyl ae”® ]
1

<—, and also | a | < 1. It is valid, at any rate, for the values of a
e

we are using here, viz. the positive numbers between 0 and 1. Just now
we shall consider 2 special cases only: @ = 0 and @ = «. Then we have

0 Iy e al —2a(2 a)2 1

=& gyttt =,
(8—9)

_aao _2u(2a)1 1

o, = T e R

Using (8—9) and (5—6) we find that a, = 1 — o which we knew already.
Simple expressions can also be found for the quantities s, although not
quite so simple as in the case of o.

6. The application of a, to the solution of the main problem.

We will now find § j » 9. e. the probability of a waiting time greater
than z, or its complement S <§> ‘For this purpose, we return to the
equation (1) which we shall now proceed to generalize. On the left-hand
side we substitute § <—<—) for a,, and on the right, s, _, for s,; in other

2
words, we move the oblique line concerned a step z to the left. The equation

thus obtained,
< ‘
S <z> =1—aq" 50 _,

or (10)
>
S(z): Qg " S, —z

11
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is proved in quite the same manner as the original equation (1). Also the
equation (2) can be generalized in a similar way, but we need not go
into that.

The equation (10) has the drawback of containing an infinite series
which, however, can be easily replaced with a finite series. We have

T0,—2 T 80, —2 = %0,—2) (11)
o 0, —zn = L (12)

the latter resulting from Jenser’s theorem.
By means of this, we get from (10)

l >
S ( > =1—arp _y, (13)
2 :
or '
<
S <?> = al07"(0’ —Z) . (14)

This formula is valid for all values of 2, but the number of terms resulting
depends on whether we are dealing with first interval, 0 <z <{, or
second interval, t < z < 2, &c. As I have done elsewhere, cerfain special
constants by, by Co, €1, Ca C3; &c., can here be used to write the formulae
concerning each separate interval, but these constants are easily derivable
from a@,. As a matter of fact, the formula (14) expresses everything in the
_ simplest and most convenient form.

7. The case of x = 2; definition of a, and a,.

We understand by @, the probability that there will be no waiting
time after an arbitrarily chosen call (or that there will be at least one
unoceupied line); by @, we understand the probability that there will be
no waiting time after a call when there has been another call immediately
preceding it (or that a random call will find both the lines concerned
unoccupied). We get directly the relation,

a; +ay=2(1—a); (15)

for, @, is the probability that there will be at least 1 line unoccupied at
at any arbitrarily chosen moment, and a, is the probability that there
will be 2 unoccupied lines; and 2 (1 — a) is the average number of un-
occupied lines. — A number of equations sufficient for the determina-
tion of @, and a, will be given later.
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8. The table and the oblique lines.

Here, too, we use the previously mentioned table and define certain
sums, partly finite, partly infinite, and denoted by the letters o, 7, and s;
and we attach the definitions to certain oblique lines having the direc-
tional coefficient « and being situated in the plane of the table. The only
distinction is that the difference in abscissa for the successive points
selected along an oblique line is not 1, but 2; the difference in ordinate is
not a, but 2 a. As before, we use two indices, viz. the abscissa and ordinate
for one of the points; the ordinate, however, can be omitted when equal
to 0. Additional distinctive marks consisting of 1 vertical stroke, re-
spectively 2 vertical strokes are prefixed in the cases where there is a risk
of mistaking the previously defined sums for those now introduced.
We have also here -

T, 0) T S, v) = Fa, v)> (16)

where the symbol ¢ indicates the inclusion of all terms (or all which are
not 0); s, on the other hand, indicates the inclusion of those only which
correspond to points with positive ordinates; and r, that only those cor-
responding to negative ordinates, and 0, are included. — (o and s are
equal and 7 = 0 in many cases, viz. when the oblique line intersects the
negative part of the x axis, or possibly the positive part between the
points x = 0 and z = 1.

9. Determination of a, ond a,.
We will prove that
' a6y =1— (a8 + @¢s; ) ‘
g =1—(as_;+ aes, )y (17—19)
0 =1—(a;s_5+ aos_l),]

where, in accordance with the foregoing,

5 (2t)5
e —ot
SLme g e
£ (28)4
_ =t — 2t
Sy =6 2!+e T 4+ ...
(20—23)
fn (21)?
—t 7 4 2
Sa =TT gt
A A Ch),
0! 21
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or, if you like,

o (20, (44)®
8§, — € 31 e T +
(2 a)® (4 a)t
__ ,~2a —4a
o = 21 o T
(2 a)t (4 a)? S
__ —g2q & & —4g \EC
S_q1=2¢ T + € Y T
(2 a) (4 a)?
_ ,—2a —4a
S_p=¢ ol -+ € T + ...

As we shall see later, the equations (17—19) can be expressed in a dif-
ferent form by introdueing the sums o instead of the sums s; but we will
prove them in the form as given above.

The equation (17) can be proved as follows: If we consider all the cases
where an arbitrary call must suffer a waiting time, it will be evident
that these cases can be arranged in various groups, such as:—

1) During the preceding time interval of the duration ¢ (or 2 «) there were
2 or 3 calls

2) - - - - - - - - 24 there were
4 or 5 calls

3) - - - - - - - - 3t ~ there were
6 or 7 calls,

and so on.

Care should be taken, however, that no one case be placed under two
different groups; to avoid uncertainty in this respect we will decide upon
always preferring the group with the higher number to that with the
lower number. Agreement with this is found in that, in group no. 1 above,
the specification reads “2 or 3 calls” (i. e. and no more), and the follow-
ing groups are in analogy with this; but the cases which, accordingly,
should be included must now be sifted further. It will be necessary to
distinguish, within group no. 1, between a subordinate group a (2 calls)
and a subordinate group b (3 calls), and similarly within the other groups.
Tt is now easy to see that the probability that a case really belongs under a
subordinate group o where it has temporarily been placed, is identical
with the probability that an arbitrarily chosen call will not have to suffer
a waiting time; in other words, a,. Likewise, the probability that a case
temporarily placed under a subordinate group b really belongs there,
is the same as the probability that an arbitrary call will not have to wait
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and furthermore finds both lines unoccupied; in other words, a, Hence
we have )

£? (2¢)* £3 (2t)3
1 —t — 2 . —t " —2¢
=1 a1<e Y + € 1 -+ ) ao(e 31 + e 51 +

or G, =1— (a8 + @g84), q.e.d.

The equations (18) and (19) can be proved in a similar manner, but we
shall not dwell on that.
By inserting o instead of s, the equations (17—19) become simpler
and more uniform, viz.
1l =a460 + agyoq
Il =ay0_1 + a40, [ (28—30)

1 =ay0_5 + ago_,

The significance of these three equations (their number could easily be
increased) is that the constants ¢, and a, can be determined by means
of any two of them (or by any one of them when the equation (15) is
utilized). Incidentally, they are also significant in another respect which
we shall see later.

10. Introduction of the new constant B, summation of the infinite series,
and determination of a, and a,.

The infinite series, in the summation of which we are now interested,
are the following:

0t g (2 a)? i (4 a)®
e e
, ot o (20a)? 4 a)t
oy = 0B Bt
(31—34)
_ oo (o)t (4a)?
o = T Th
‘ o (2 a)0 _ 4 q)2
EU*Z — e_“a~(—b~!)——[—e 4&%_'_ ..

We know the sums of the following series which are closely related to
those just mentioned (Jensen’s theorem, equation no. 7 above):
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. (—a) L, o ., e o, (2a)?

o TR TR A Y
00 al .22 (3a)

o0 = ¢ 0! e Tf_l_e 2GT+63 31
al (2a)t (3a)? (4a)?
. ,—a —2a —3a ) "/ 4al” 7

i e TR TR A TR T
(2 )0 (Ba)t |, (40  _ (5a)®

. ,—2a —3a 4a ba
o= g T e e g e

I—a

(35— 38)

The series Hc and }cr only differ in that every second of the terms
contained in the latter is missing in the former. Now, we obtain from

the equations (35—38):

1 . _ '-1 (—1)0 _ ot —a 12
P = (ae™ %) ‘T+(ae a)°F+(a6 )lg
0 1 92

}oo = (ag™ )0 0 4 (ae™®)! v + (ag™ )2 —

0! 1! 21

10 21 32
a 0'_1 = ((1,6 a)l 0’ —I— (ae_a)z _]_T + ((Ie_a)a ?‘
20 31 ) 42
@t oy = (a6 P o (ag ) o (e

A scheme of obtaining the values of the four quantities

1

Llon o @l

+ .

a HU—-Z’

(39—42)

by removing every second term (viz. those with odd exponents) from the
four series above, all of which are arranged according to the powers of
ae™®, can be put in practice in a convenient way by replacing a in each
series with a new constant 8, as given by the equation

,Be_ﬁ =-—a€g *

and then taking the mean value of the old and the new result. The equation
will always have one, and only one, serviceable (negative) root (i. e. one

to which Jensen’s theorem can be applied).
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Thus, we get

i” _i< 1 + 1 )
o I T 2\a(l—a) " BI—P)

1 1 1
o =3 (= =)

(43—45)

1 a B
* ”0"1_5( I—a 13 >

\ 1 a2 e
¢ HG‘Z*E( I 1—,8>

or, )

| oo = (co=a* 70=7)
T2 lat—a " BA—p

1 1 1
I _7< 1 T 1—3)

(47—50)

o 1 a B
HLI_?J( e 15 )

1 a p?
H —2 2a2< l1—a + 1—p8 )

It is possible, of course, to find the quantities H s just as we have
found the quantities | o (expressed in terms of a and ), but the ex-
pressions will not be quite so neat. — From the equations (28—30) and
(47—50) we now obtain

b= 2(l—a) aiﬁ l
[ (51—52)

B
a—pB

which, by insertion, will satisfy not only (28—30), but also all those
analogous to the latter, 7. e. more generally the equation

= —2 (1 —a)

@10, + ag0o, . = 1;
for we get

91 a a? 1 1
‘ —a)a—ﬂ'E(a”(l—aﬁﬁ”(l'—ﬁ))

B aP 1 1 I

a—pf 2 \@P™1 (1 —a) pP(1
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11. Applying the quantities found, a, and a,, to the solution of the main
problem..

We shall now determine S , ©. e. the probability of a waiting time
. < . .
greater than z; or its complement S|{— ). We consider the equation (17)
2
2
and on the right s, and s, with s, _,, and s, _,, respectively; in other

words, we move the oblique line concerned a step z to the left. The equation
thus obtained,

which we will now generalize. On the left side we replace a, with § (§>,

<<
N <z> =1-—(a;-" S0, —z) -+ @y 8a, ——z)) (63)
or
>
S( . ) = @1 * S, —zy T Go " S, —z) (54)
/ .

can be proved in quite the same manner as the equation (17). Also (18)
and (19) can be generalized in a similar way, but we need not go inte
that. )

Now, the infinite series in the equations (563—54) can be replaced with
finite ones. We have

0, —2) T S0, —z = %0, —2) (85)
a, —2 T Sa,— = %, —a -~ (56)
@100, —z) T G0, —p = 13 (57)
hence
>
. < Z) =1 =g = Gy, — (58)
or
< .
g <_z-> - 1%, —2) T G, —2) (59)

The formula is valid for all values of z. The number of terms con-
tained in the formula depends on whether z belongs in the first interval
0 <z < t, or in the second interval { << z << 2¢, and so on.

It is easy to write out, as I have done elsewhere, the special formulae
valid for the separate intervals; the constants involved here, by, by, b,,
bg; cp, €1, G, €3, Cy, G55 &c., are easily derived from. a, and a,. However,
the formula (58—59) really expresses everything, and perhaps even in
the very best form, at that.
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12. Appendix.

The proof of the theorem used in the above, viz.. When, during a given
time, the average number of calls is y, the probability of x calls being
originated will be

S, =¢¥ —.
“ !

Let it be assumed that the time in consideration represents a portion
of a very long time over which a correspondingly great number of calls
is dispersed so that y calls, at an average, fall within the time portion
considered. The duration of the latter can be called %, the unit of time
being chosen in such a manner as to give an average of 1 call per unit
of time. Let us suppose that, in a certain case, say, 5 calls occur
within the time %, and let us move y a short distance dy; then. there will

5d
be a probability 2% that 1 of the 5 calls is shut out so that the number
¥ :
is reduced to 4. Vice versa, if we had 4 calls before y was moved, there will
5d
be a probability 2 of gaining 1 new call by the movement. But the
Y

transitions from 5 to 4 and vice versa must neutralize each other, and so

5
S — =8,
Y
This result — and analogous results — give us the ratio between the
successive members of the sequence Sy, Sq, S,, - ...; these must then be
proportional to
A
> 1—!: ”‘2“!'; “?:!’, c e
As, necessarily,
Se+8:+8,+.... =1,
and as
y v 9 o
1 +T!—i—2—!—l—~3—!~+ .= é,
we obtain
) 2
So=e¢v, S=cv 2, g—ev?

q.e. d.
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Table 1.
Values of the constants ¢, for # = 1; a, and a, for z = 2.
z =1 =2
. . o Gy Qg
00 1-0 - 1-:000000 1-:000000
1 09 0-982234 0:817766
2 8 935507 664493
3 7 866418 533582
4 6 779180 420820
5 5 676741 323259
6 4 561316 238684
7 3 434633 165367
8 2 298104 101896
9 1 152892 047108
1-0 0 000000 000000
Table 2.

<
Values of S (—) for x =1 and x = 2.
2

x—=1.

| 5]
[3
=)
—
o
w
W
[
{=2]
]
oo
©
—
(=]

1-000 | 1-000 | 1-000 |1:000 |1-000 |1-000 {1-000 |1-000 |1-000 |1-000 |1-000
0-900 |[0-995 [1-000 |1-000 | 1-000 |1-000 |1-000 |1-000 |1-000 |1-000 |1-000
800 884 |0-977 |0-991 |[0-998 |0:999 |1-000 |1-000 |1-000 |1-000 |1:000
700 774 855 945 967 983 (0992 [0-996 | 0998 [0-999 |0-999
600 663 733 810 895 923 947 965 977 984 990
500 553 611 675 746 824 856 885 910 931 947
400 442 489 540 597 659 729 761 792 822 849
300 332 366 405 448 495 547 |. 605 635 665 694
200 221 244 270 298 330 364 403 445 470 495
100 111 122 135 1491 165 182 201 223 246 261
000 000 000 000 000 000 000 000 000 000 000

n (=
O W WO R WO

—
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L/

<
S W0 - T WO

-

1-:000 | 1-000 |1-000 | 1-000 |1-000 |1-000 |1-000 |1-000 |1-000 |1-000 |1-000
0-982 |0-995 | 1-000 | 1-000 |1-000 |1-000 |1-000 |1-000 |1-000 |1-000 |1-000
936 960 | 0-980 |0-994 | 0-999 [1-000 |1-000 |1-000 |1-000 |1-000 |1-000
866 899 928 953 974 (0989 [0-995 | 0-997 |0-999 | 0-999 | 1-000
779 815 849 881 911 938 960 976 985 989 | 0-992
677 712 748 783 817 849 880 909 931 949 961
561 594 627 661 695 729 762 794 824 852 8717
435 462 490 520 550 580 611 642 673 703 732
298 318 339 361 384 407 432 457 482 508 533
153 164 175 | 187 200 213 227 241 256 272 288
000 000 000 000 000 000 000 000 000 000 000




4. THE APPLICATION OF THE THEORY OF PROBABILITIES
IN TELEPHONE ADMINISTRATION

From the Scandinavian H. C'. Orsted Congress in Copenhagen, 1920; a lecture.

1. The problem forming the principal subject of this lecture may
temporarily be defined as follows: — We have a certain amount of tele-
phone traffic, . e. a certain number of calls per unit of time, and we have
a certain number of lines to take the conversations in question, or else
a certain number of operators to establish the desired connexions. What
result may we expect, on the assumption that any one line (or operator)
can always be substituted for any other line (or operator) if the latter
happens to be occupied at the moment? The circumstances are not al-
ways the same; sometimes the systems are arranged in such a way that
an incoming call will be lost if the whole group is occupied, in which
case the problem is to determine the number of lost calls. But there are
also systems arranged so as to provide for a delay in answering, and then
the problem is to find the probability of delays, or waiting times, of cer-
tain durations, including the average waiting time. Experience has
taught something about these matters, though not enough. From time
to time, new systems are introduced, and new propositions made; and it
would be much. too costly to subject them all to practical experiments.
Therefore it is necessary to theorize, and this applies to all branches of
telephony (manual, automatic, &c.): the problems differ to some extent,
but they are based upon the same things, and the circumstances are
analogous in many respects.

I shall now make a few historical remarks concerning, especially, the
oldest works in this line. Here, a short essay by Mr. F. Johannsen, director
of the Telephone Company of Copenhagen, deserves to be mentioned
first. The essay deals with waiting times, particularly in manual ex-
changes; it was first printed in 1907, then in “Ingenigren’, 1910, and in
the ‘“Post Office E. E. Journal” 1910—1911. The solution of the problem
contained herein was very simple — not exact, but serviceable for the
time being; incidentally, Mr. Johannsen caused a new and more thorough
investigation of the rather difficult problem — and other similar prob-
lems — to be undertaken. A considerable interest had now been taken
in the matter, in Denmark as well as abroad, and people set to work
upon it. As regards automatic exchanges, the first important work was
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done in 1913 by Mr. P. V. Christensen, Engineer-in-Chief to the Tele-
phone Company of Copenhagen, his subject being the calculation of the
nunmber of selectors (or lines) in all the stages of an automatic system;
he managed to illuminate this question in all essentials, at least with
respect to the systems that were in use at the time. Grinsted in England,
and Dr. Spiecker in Germany should also be mentioned. Among the
later authors whose works undoubtedly are fresh in the memory may
be mentioned: Mr. Engset, departmsnt manager; Dr. B. Holm; and Dr.
Lely. The most prominent of the mathematicians who by their works
have supplied the basis of the Telephone Theory, are Poisson (1837,
Recherces sur la probabilité &c.) and our contemporary, Dr. J. L. W. V.
Jensen, Engineer-in-Chief to the Telephone Co. of Copenhagen (a dis-
sertation in Acta Mathematica, 1902, dedicated to the late N. H. Abel).

It will be necessary, unfortunately, to omit from the following all the
proofs of the various results stated therein, so for the proofs I shall have
to refer to my printed works!), where a good many more numerical
results than I am able to give here, can also be found.

2. On the Dustribution in Time of the Calls, and the Holding Time.

a. There is a very important formula concerning the- distribution of
calls. We let y be the average number of calls during a certain interval
of time, and we want to find the probability that 0, 1, 2,.... calls will
actually be originated. These probabilities will be, respectively,

2
Py=e¢¥ P,=e¢"Yy, P2:e_1’§/—'....,
or, generally, T
s 8 y P, :eﬁyJ_l_
z!

It will often be convenient to choose the unit of time so that the average
number of calls per unit of time is equal to 1; the above proposition can
then be expressed somewhat more briefly as y is simply the length of
the interval of time. This formula is strictly exact if the calls are distrib-
uted or dispersed quite accidentally, any one call being independent of
any other, over a very long time, of which the interval under consideration
constitutes a small part. In practice, the formula can be applied without
hesitation to the calls, but not to the conversations as these are not
fundamentally independent of each other, but competing. From a ma-
thematical point of view the formula is due to Poisson; it has been found
again several times later, and it is being utilized more and more in tele-
phony — thus, in Denmark from 1909, in England from 1907 (published

1) See pp. 131—171.
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1915) — and it is important in other, quite different domains also. The
X

function e—yilihas been tabulated, more or less extensively, by Bort-
x

kiewics, H. H. Soper, and R. Holm. Incidentally, by means of such a
table it is possible o derive a new table — by successive additions — of

the quantities
PO; PO_I_Pl: PO+P1+P2:'-"2

the significance of which is obvious.

Table 1.

DURATION OF 2461 CONVERSATIONS, COPENHAGEN MAIN EXCHANGE 1916
’,2 |
8 L ~~——NUMBER OF CALLS 0-9 SEC.,10-19 SEG. ETC. IN PERCENT.

——THEORY.

17
%
15
% |-
13-

o - N oSy NP D

b. The duration of a conversation, or the holding time, has formerly
been regarded as being constant, as a rule. This is rather correct in the
case of trunk calls which are cut off at the expiration of a certain period;
it is also fairly correct as to the operator’s conversations with the sub-
scribers (while the calls are being operated), if not in all exchanges. For
the most important class of conversations, 1. e. the ordinary local calls,
is valid with good approximation the law of distribution

S =e¢ " whence 8§ =—e¢"

where § denotes the probability that the duration » will be exceeded;
the unit of time is here supposed to be identical with the average duration.
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The two equations express that the probability of a current conversation’s
being on the verge of termination is independent of the time it has
lasted already — which might reasonably have been expected before-
hand. The main point is, however, that experience agrees nicely with
the law of distribution, c¢f. table 1 where experiences from the main
exchange of Copenhagen are represented graphically. Also Dr. Lely’s
results seem to agree with it in the essentials. A larger number of laws
of distribution might be desirable, for the sake of eventualities; so, quite
naturally, we arrive at a series 7'y, 7'y, T'5 .. .., the equations of which
are given in the table below together with the corresponding values
of the standard deviation (dispersion).

T, | S=¢e" 8 =—e " 1
2 2 1

T, §=e2rf1 4" 8 =g g2 -
1! 11 Y

R T L . L
1! 21! 21 l/?’

The two previously mentioned laws of distribution are thus included in the
table, the latter as 7', (top), the formeras T (bottom) (constant duration,

Table 2.
DURATION OF A TELEPHONE CONVERSATION :
DIFFERENT POSSIBLE LAWS OF DISTRIBUTION.

9 U e.n e.n

. 2}23-“{-2—3—){ e.zn‘”g'_'?)‘)z
, 5)36'5”@5—) e'sn(w’%"ﬂé’-’J
. e
05 I
4

3

2

1

0.0

00 01 02 03 04 05 06 07 08 09 {0 1 42 13 4 45 6 17 18 19 20
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dispersion zero), a number of intermediate equations being intercalated
between the two extreme laws. 7', was previously suggested by Lely.
The curves in table 2 will serve to illustrate what has been said here.

It should be noticed that these different hypotheses, when applied to
the solution of problems, in many cases will lead to the same result; in
other cases the results will be more or less different. In order to avoid
complications it will be advantageous to employ, as a rule, and if possible
either 7', or T which, each in its own way, are simpler than the others.

3. On Obstruction or Barred Access (“Systems Without Waiting Ar-
rangement’).

a. We suppose that there are z lines between two points 4 and B, and
that the intensity of traffic is y. The term “intensity of traffic” means
the average number of calls being originated in the course of a time that
is equal to the average holding time. The ratio of y to » can be used in-
stead of y; this ratio is called the o of the lines, or the occupation. Putting
B equal to the probability of obstruction or barred access, 4. ¢. the prob-
ability of finding all the x lines occupied, we obtain:

Y

!

B=
1+ 4 4L
1! z!

There are various approximative formulae for this quantity which is
often called the grade of service; but then, the exact formula is very
simple. When calculating in practice the factor ¢~ should be applied both
in numerator and denominator as this will make it possible to use the
numerical tables mentioned in the preceding section. In the collection of
formulae, table 3, are furthermore given the probabilities that 0,1, 2, ...
lines are occupied. It is possible to prove that these results and those
following later in this section are independent of the law of distribution
that applies to the durations of calls. The proof is based on the theory of
“statistical equilibrium” which I shall not try to explain here. Nearly
all of the following formulae are based on the same theory. The curve
chart, table 4, shows graphic representations, partly of B as a function
of y for * = 4, 5, 6, and partly, for comparison, of the results of a
special kind of experiments based upon 100 imaginary calls distributed
as “accidentally’’ as possible; I found the “times on” by taking the last
3 figures from each of the 100 7-figure logarithms log 1 — log 100 and
arranging the 100 numbers thus produced in the order of their magni-
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tudes. Choosing first a certain holding time, it is quite easy to find out
what happens to the 100 calls; next, another holding time is chosen
(¢. e. a different y), and so on.

b. The next, somewhat more difficult problem to be con31dered is this: —
We have z lines between 2 points 4 and B; also, n lines connecting 4
with n different points C,, Oy, .... C,. The traffic between B and these
points C proceeds over 4 ; the intensity of traffic is B for each channel,
or Bn altogether, and whether a call originates from this or that side is
~ of no importance in this connexion. Several questions may now be
asked; but especially the following three: — What is the probability
g, that one particular line out of the = lines is available for a call? What
is the probability g, that one, or more than one, of the # cooperating lines
is available for a call? What is the probability g,, of all the lines’ being
available? Once these probabilities have been found, we can derive
others directly from them, such as:

3

I In,x and T:

the significance of which is obvious. (Cf. the collection of formulae). The
problem mentioned has previously been treated by 7. Engsél who em-
ployed an approximative method, however, for which reason h1s results
differ a little from mine.

c. Systems with “Grading and Interconnecting” (““Mischung und
Staffelung’’). ,

These systems play an important part in automatic exchanges, and
much interest is taken, in e. g. England, U. 8. A., and Germany, in the
question of how much can be achieved by their employment. The fact
is that automatic selectors have only a limited — usually not very large —
number of contacts, and so give admission only to just that number of
lines. Let us suppose that we have a total of # lines at our disposal, the
selectors, however, having only % contacts; then, in each separate case
only k£ out of the « lines will be hunted through in search of a disengaged
line. It is a well known fact by now that it is not a happy solution to
divide the lines into a number of separate groups, each containing #,
and divide the total traffic ¥ among the latter. Another procedure is to
divide the lines into a number of separate groups and one common group,
the latter to be used only when the separate group concerned has been
hunted through and found busy. Or a circular permutation may be used,
i. e. a division of the traffic into = parts, the first of which hunts the lines
1,2,3,.... k; the second 2,3,4,.... (k- 1); and so on all the way.
In this manner all the lines will be used equally much. Still, this method

12
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Table 3. Formulae concerning Loss.
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Table 3 (continued). Formula concerning Loss in Grading Systems.

p_ ToPo+TiPy+ ... +T,P,
NoPy+ NP, + ... L N,P,

Index. P. N. T.
0 e Y 1 0
)
1 v 7
T ! 0
2
2 e—”% 1 0
Y -
k e“@’—];! 1 N,— N,
x
Yyt x
—y _
k+1 e 1) 1 < . j N1 —Nios
x—Fk ’
/ x x4+ 1
k42
k42 Y 1 — — 7 ‘
T ( = ' EEY Vs Nivs
\ x—k x—Fk
o [N EEN D)
., Y T T x
k-3 |e¥= 1 — — _ —
| SR : =51 ! =52 | Moo= News
x—k x—k x—Fk
z e‘yZ—! 1 — % 1 — v N,
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Table 4.
EXPERIMENTS WITH 4,5 AND 6 TRUNKS.
40 -
B B - . . I -7
B : / ——————— /
0L . -
- 1 | o
B ,_J L e————— 45-’// S PR =
- = - ————
- i i -
20 | C
. C r_.' / //{--/"6
— r-1= — r_J—J
10 _—_J| /;/7 4 {J/ '%l
%/A‘I_-J B= 1*%"‘ {"
] == i X
.002.0 25 30 35 40 45 5.0 55 6.0
y A

- is not the best possible, ¢. . the one that gives the traffic the best chance of
getting through. The ideal method consists in the k lines being chosen in
all possible ways (i. e. not only in the recently mentioned z ways) and,
furthermore, subjected to hunting at random — not in a predetermined
order. This necessitates, of course, a division of the traffic into a large
number of portions. Under these presuppositions we arrive at the for-
mulae given in table 3, and the numerical results (for + = 5, 10, 15,
20, .... and k =5, 10, 15,20, ....) in table 5; only a few of these
numerical values have been published before. To make the calculations
easier, I give here a couple of approximative formulae; they can often
replace the exact formulae, although they must be used with caution:—

E
B = (——) ‘ . . .. (for great values of y and x)
xr .

— k) T T—k
=y (f_;'__) =g V. %‘_ : (e_ﬂ zxy——k)'> ... .(for small values of y)

B

There are probably several arrangements that are more or less different
from the above mentioned ideal method, but nevertheless give almost
as good results. For the time being, however, no precise information on
this point is available.
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Table 6. Formulae concerning Delays. (Hypothesis 7', ).

x =1 S(<)= a, 7(0,—2)
_ _ (a—z)l
(z=yn=oan)ay, = l—a 7(0, —2) =e* -+ ¢° “T+...
a2 a
M = =
2a(l—a) 2(1—a)
x =2 S (<) =ay - 7(0,—2) +a,-7(l,—2)
=yn=2a a = a — 2)2
(e=yn=2an) a; =2(1—a) | 7(0,—2)=e€*} g 20 (_2_?_)._{_. ..
a—f 21
B | = L2t - a:(2a—z)3
g :—-2(1—:1)“_,8 r(l,—z)=¢e F—}—e 2 -T~|—. ..
,Be‘ﬁz— ag ¢
oL 2l
*Z(a—«ﬁ) 4a(l—a)
r =3 8(<) =0y 7(0,—2) +a,-7(l,—2) +a,7(2—2)
(2=yn=3 an) a? = s oy (Ba—2)®
g =3(l—a)———— 0,—2)=¢e*+}¢ **———
= ey |1 31
a(B+y) |= 2 B gg(Ba—2)*
3y ay :—3(1—a)(;:ﬁ)(a—;y) 7(1,—=2)=¢ 1—!4—6 3 T—}—
By =, . B g, (3a—2)°
@y :3(1——a)m 7(2,—2)=¢ 2_!_|_e 3 e
I’ Be P =ae
l'ye Y =a€g *- k2
k=1
1 1 3a2—2
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' Table 6 (continued). Formulae concerning Delays. (Hypothesis 74.)
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4. Delays in Answering (Waiting Times).

a. Let us temporarily suppose that the conversations are of constant
duration (“hypothesis 7'.,”). The number of lines is z, and the intensity
of traffic is y; we must have y < 2. Now, in the first place, we have to
determine S (>), the probability that the delay will exceed a certain
length of time; or § (<), the probability that the delay will be below a
certain length of time. This length of time is called #» when the holding
time is used as the unit of time, but z when the time during which an
average of 1 call is originated, is used as unit of time. We prefer here to
use the holding time; we have also z = y - n. — The necessary formulae
are contained in the collection of formulae, table 6; some of the final
results arve shown graphically in tables 7, 8, and 9, to which, however,
must be added a few explanatory remarks. The numerical calculation is
based upon a table of the Poisson function already mentioned several
times: y°

e“?/
2!

as calculated this time for negative values of the variable, y; for, the main
part of the work consists in calculating series of the following type:

_ . . (a — =)t 24 (2 a — 2)?
r(0—g)=¢ + &= f T
for x = 1, or
_ _ (Qa%z) g (da—2)*
— % g —2a g—da N T/
PO, —r) = TR T e
- o (2a—2) _ (4a—z)
_ z—2a " . 7 4da
P (L, —2) =e" +e R

for z = 2, &ec. Obviously, all the terms of these series are examples of
the Poisson function and can be found in the table just mentioned. It
is emphasized that these series are not infinite; they continue only as
far as is given by the table. Otherwise, the number of terms to be included
will depénd_ upon z (or n, if you like), and transition takes place for

n=20,1,2,3,....

That is why e. g. the curves in table 7 exhibit bends at n = 1.

The reader will perhaps notice the new, simple formulae for the average
delay; they are due to Mr. H. C. Nybglle, M. A., in collaboration with
the author.

b. We will now leave the hypothesis 7', and pass on to the second main
case 1';. Here, the formulae are simpler, the curves are more smooth,
all calculations are easier. The results will be found to differ to some
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extent from those previously mentioned; thus, the average delay will
be 2 times greater for x = 1; 1%/, to 2 times greater for x = 2; and 1!/,
to 2 times greater for x = 3, the smaller numbers corresponding to small
values of y and the greater to great values of y.

¢. Finally some formulae are included showing, though only for z = 1,
the results corresponding to the hypotheses 7'y, T'5, .. .., T, . The curve
chart, table 10, gives an idea of the results obtained from the formulae
when a = 0.2.

Table 7.
WAITING-TIMES R=1.
1.0 —— —— ==
09 [0 /'//////‘9’2%%’5—; e e e e
N e
. |
X — —
06 ﬁ///;// e L
Q5 4///§//// ] /// l—
: —
04 «////////// ////
L — [ — "]
o {////- // // ////
; — E—
02 o1 1 | | T
. —— — ——
a1 el T | ]
S | 10 I
Q 01t 02 03 04 05 06 07 0B 09 10 11 12 13 1A 15 16 11 18 19 200
™
Table §.
WAITING-TIMES X=2.
10
09 :EE_—::,,.—"_—:;?,,//Z‘;/“ :___-—'______————;—“—__’_————_,__——__—"’ i —
: = // T L1 L1 |
071 o3 — 1 T L T
06 .{ L~ L1 | ——"
o / T / // //-/
-
03 02| L1 LT |
) L] | L]
"1 | | et
02 Fogi—t— ey sl
04 | S
S Lo

0 01 02 03 04 05 06 07 08 09 10 41 12 13 14 15 16 17 18 19 20
mn
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Table 9.
WAITING-TIMES X=3.
e e e e e e e ==
g > gt £ —= T — — = I p——
P e s S e e e et s B e L s N B
_-F > [ ‘_‘,—-‘ — N

s s s o e e e g g R

5 L~ P - =
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1) i- I
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Table 10.
WAITING TIMES, X=1 HYPOTHESES T Tz, Too.
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Table 11. Collection of Formulae.

Different systems and rules for transferring and delays.

189

‘ r=1
L
V=90 (g) 1) =1
war | TR
transfer) M —0
B =(1)
1€ (2)
s @7 +ﬁ’(l)‘
0) + (1) —I— ( ) =
(Regular 8 = (1)-
transfer) M = (1)
B =(2)
 _ @ 3
s, @R T g
(Reduced 0+ @)+ (@) +@)=1 N
transfer) | § = (1) 4+ (2)- e "- (1 —|——1—|)
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Table 11 (continued).

r=2
1 @)
(7)_2(14_2;3, ‘m (2a48):2
0) + (1) +(2)=1
S =0
M =0
B = (2)
(1) 2) (3)
Gl tB =@t fin =
0) + (1) +(2) + (3) =1
8 =(2)- 2"
M =(2) %
B =(3) .
(1) (2) (3) (4)
— =2a-+2 — =(2a 2, —=oa; —=ua
() ZeTER qy TReTE g = G
0)+(1)+(2)+ @B+ =1
8 =@ e+ (3) e*“-(l +91’f>
M=(2)4+(3)
B = (4)
1) (2) (3) (4) (5)
—=2a-+28;, — 2a 12 —— =a; — =a; — =a
O T e A R ) BT
0)+ 1) +@2)+ @) +4)+B)=1
_ o 2n i (2n
§ =@)-e 2”+(3)-e”-<1+~—1——_>+<4)- "<1+ + )
M =(2)-t+3)3+(4)-3
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@%2a‘ @;2a‘2' @:
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O +@)+@+...=1 .
s — 2n e 2n  (2n)?
S = (2)-¢ ?"4(3)-¢ " <1+T!">+(4)‘6 “n<1+?+ Y >-|—
or S———: (2) ,e———2n(1——a): 2 a? ,e—ﬁaz(lwa)
l—oa 1+a
M=@ 4+ 3+@ 3+
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Table 11 ‘ (continued).
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=3
(0) (2) (3)
—=3a 3, — =Ba-+28):2;, —~=Ba 13
@~ let i Gy =0eat 2B = Bath)
0) + 1) + @) + (3) =1
8§ =0
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3n
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0 =238 =Bat2p: r=Batprs;
®_,. B&_ . ©_
B @ 7 ()

(0) 4 (1) +(2) + (3) + (4) + (5) + (6) = 1
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3 3n)?
S = )-e“3"+(4>-e“3” 1+~1—>+(5) —“-<1+1—?+ (2’;’)>
M =@)-35+4)5+5) %
B = ()
(L—?)a (‘2~)— a @>=3a 3 @za
) " (1) 2) ©3)
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Tuable 12. Formulae concerning Automatic Distribution. (Hypothesis Ty; big groups).

O,
o
o=y —...—=0 | O +A)=1
(Full transfer) § =0
M =0
a1
1fa
m_, @,
© oo
0) + @)+ (2) =1
a
vy =V = ... =1 N :1+1a1 "
Moo=
14 ay
““‘741‘1‘0’-12 o
1+ ag +a?
o @ 6
@—oq‘ m—al @—“1
O +ML+E@+B) =1
g :al-e_"—l—alz-e_”(l—i—n)
V=V = ... =2 1+ a, + ag?
a3 + 2 a,®
—1+a1+a12
a; + a? + a,®
1—|“3'«1“i‘‘112—|“°‘13_
o @ 6 @
[ AT R I O
O +@+@)+B)+#) =1 .
al-e“"+a12-e“"(1—[—n)+a13-e”‘”(l—]—n—]—%)
e 1+ a; 4 ar? +ar®
a;+ 20 + 3 a;’
M e
ap +a® +a®+ayt — W
4o ool tat
m__ e,
(0) (1)
vy =[...]=00 g))igl.);d—';m_l
(No transfer) "
M =
l—a
a; = a
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5. Mixed or Compound Problems.

a. We have hitherto considered two main problems corresponding
to the two different ways of arranging the systems, either in such a man-
ner that any call will result in a conversation — sometimes after a delay —
or in such a manner that such calls as cannot get through immediately,
are definitely barred, and consequently lost. Both arrangements are
well known. Now it would be interesting to try to compare the incon-
veniences accompanying either system, on the assumption that the
traffic and the number of lines are the same in both cases. A difficulty in
this respect is, however, the fact that a delay in answering and a barring
of access are heterogeneous quantities. Some information can nevertheless
be obtained by tabulating the ratio of the average delay in the one system
to the loss in the other, viz. that this ratio will increase with the intensity
of traffic; in other words, the waiting time system has the advantage
when the traffic is feeble, and the other system has it when the traffic
is rather greater. But this is what one might have expected in advance.

b. In a large telephone exchange with many opera.tors; a few of these
will always, as it were, be “free” when a call arrives; so, in a way, the
call could be put through immediately if perfect cooperation or distri-
bution, of work between the operators could be obtained. No other form
.of this was known, at one time, than the assistance rendered by neigh-
bours — which, by the way, should not at all be underestimated —; roughly,
one might say that there is a number of small groups (z = 3, or x = 2),
within each of which cooperation takes place. Nowadays it is possible,
even by several different methods, to get very near to perfection in that
every call is directed to a momentarily not too busy operator’s position;
in this connexion, the concept of “busyness’ cannot be defined precisely.
It is not advisable to exaggerate in this respect, as a considerable
space of time might then easily be wasted on the distribution itself,
even if this is carried out more or less automatically. Let us take as an
example the system employed in the main exchange of Copenhagen.
Here, two different means of distributing the traffic are used. In the
first place, the operators can help each other gua neighbours, as mentioned
above; but they can furthermore get rid of any inopportune call manually
and simultaneously with the handling of traffic proper; an automatic
selector will then transfer the call to a “free” operator. This trans-
ferring should not be carried to excess; in practice, the prescribed proce-
dure is to transfer a new (arriving) call, if the small group of neighbouring
operators concerned is fully engaged and 1 call is waiting already. This
rule we may denote by V = 1; there may be other rules, of course.
Apart from this we use the following denotations: The number of calls

13
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per operator and unit of time is a. The unit of time is equal to the aver-
age operating time, and we use the hypothesis 7', as our basis. The
number of directly cooperating operators is z (z = 1, 2, or 3). The
maximum number of waiting calls is V. All these are the known quant1t1es

B denotes the probability of transfer, and g the number of transferred
calls per unoccupied operator during the unit of time. The probability
of @ calls’ being served, or waiting at a group, is denoted by (a); o can-
not be greater than x + V. The probability of delay beyond a certain
limit is called S, and the average delay, M. For the rest, see the collection
of formulae (table 11). When employing the formulae, we must proceed
as follows: First we choose, by way of experiment, a value of B, then
we calculate B, and we go on doing this until the equation

B=B-

l—a

is satisfied ; this equation expresses that the number of calls transferred from
one operator’s position must equal the number of calls transferred to another
position. This theory is based upon the supposition that the total number
of operators is great; besides, we have not taken into account any time
for the perceiving of signals, the transferring of calls, and the movements
of the selectors, for which corrections may be introduced if necessary.

¢. We will now consider a type of systems in which the distribution is
effected quite automatically, without any assistance from the operators.
Like the system described under 55 above, this system has several modi-
fications depending on whether 1,2, 3, .... calls are permitted to wait
in each position. The denotations are, in the essentials, the same as above;
@, means the number of calls arriving, during the unit of time, in one of
the positions not fully loaded. This quantity is evidently somewhat
greater than a (vide table 12). It is a matter of course that it is presup-
posed in this theory (as well as in the preceding theory) that the operators’

being busy is the only reason for .delay — not, e. g., shortage of cords, &c.

Tt would beeasy to enumerate many similar problems which the Theory of
Probapbilities already is — or in future will be — able to illuminate, thereby
contributing to provide for a steadily improving utilization of staff, machin-
ery, and lines. True, there are great difficulties — which fact, however,
should not deter anybody. The same applies to many other domains where
the application of this science has made betber understanding possible,
such as: the theory of measuring and counting, the theory of statistics,
the science of mortality and genetics, or the theory of molecular motion and
collision. Tn all these fields there are many important questions which have
not been answered as yet — or perhaps have not even been formulated
yet. This holds good of the theory of telephone traffie, too.
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Table 13.

2T

X!

Values of J—I e Y for y < OY).

© y=—21 Y =—2-2 Yy = — 2:3 Yy =— 24 y=—25
0 + 8.166170 | -~ 9.025013 | 4+ 9.974182 | - 11.023176 | - 12.182404
1 — 17.148957 | - 19.855030 | — 22.940620 | — 26.455623 | — 30.456235
2 + 18.006405 | - 21.840533 | - 26.381713 | - 31.746748 | - 38.070294
3 —12.604483 | — 16.016391 | — 20.225980 | — 25.397398 | — 31.725245
4 -+ 6.617354 | + 8.809015 | - 11.629938 | - 15.238439 | + 19.828278
5 — 2.779289 | — 3.875967 | — 5.349771 | — 7.314451 | — 9.914139
6 + 0972751 | 4 1.421188 | 4 2.050746 | -+ 2.925780 | -+ 4.130891
7 — 0.291825 | — 0.446659 | — 0.673814 | — 1.003125 | — 1.475318
8 + 0.076604 | -~ 0.122831 | 4+ 0.193722 | + 0.300937 | + 0.461037
9 — 0.017874 | — 0.030025 | — 0.049507 | — 0.080250 | — 0.128066
10 + 0.003754 | + 0.006606 | + 0.011387 | 4 0.019260 | - 0.032016
11 — 0.000717 | — 0.001321 | — 0.002381 | — 0.004202 | — 0.007276
’ 12 4+ 0.000125 | 4 0.000242 | +~ 0.000456 | 4+ 0.000840 | -- 0.001516
13 — 0.000020 | — 0.000041 | — 0.000081 | — 0.000155 | — 0.000292
14 + 0.000003 | 4 0.000006 | -+ 0.000013 | + 0.000027 | + 0.000052 |
15 — 0.000001 | — 0.000002 | — 0.000004 | — 0.000009
16 -+ 0.000001 | + 0.000001
x Yy =—26 Yy = — 27 Yy =—2-8 y=—29 y=—30
0 + 13.463738 | - 14.879732 | 4 16.444647 | - 18.174145 | - 20.085537
1 —35.005719 | —40.175276 | —46.045011 | — 52.705022 | — 60.256611
2 +-45.507434 | - 54.236622 | -- 64.463015 | 4 76.422281 | -+ 90.384916
3 —39.439776 | —48.812960 | — 60.165481 | — 73.874872 | — 90.384916
4 +-25.635855 | |- 32.948748 | - 42.115837 | 4 53.559282 | - 67.788687
5 —13.350644 | —17.792324 | — 23.584869 | — 31.064384 | — 40.673212
6 + 5.776613 | + 8.006546 | - 11.006272 | -+ 15.014452 | - 20.336606
7 — 2.145599 | — 3.088239 | — 4.402509 | — 6.220273 | — 8.715688
8 <4 0.697320 | 4 1.042281 | - 1.540878 | -+ 2.254849 | - 3.268383
9 — 0.201448 | — 0.312684 | — 0.479384 | — 0.726562 | — 1.089461
10 + 0.052376 | 4 0.084425 | 4 0.134228 | 4- 0.210703 | -~ 0.326838
11 — 0.012380 | — 0.020722 | — 0.034161 | — 0.055549 | — 0.089138
12 -+ 0.002682 | 4 0.004663 | 4 0.007971 | - 0.013424 | & 0.022284
13 — 0.000536 | — 0.000968 | — 0.001717 | — 0.002995 | — 0.005143
14 =+ 0.000100 | + 0.000187 | -+ 0.000343 | 4 0.000620 | -+ 0.001102
15 — 0.000017 | — 0.000034 | — 0.000064 | — 0.000120 | — 0.000220
16 -+ 0.000003 | + 0.000006 | + 0.000011 | 4 0.000022 | + 0.000041
17 — 0.000001 | — 0.000002 | — 0.000004 | — 0.000007
18 -+ 0.000001 | 4+ 0.000001

1) Part of this table, comprising values of y
the present reprint, as it is identical with Table

ranging from 0.0 to — 2.0, is omitted in
2, p. 137, to which the reader is referred.
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Table 13.
(continued).

T y = —31 y=—372 y=—233 y=—234 y=—35
0 4+ 22.197951 | - 24.532530 | 4+ 27.112639 | - 20.964100 | + 32.115452
1 — £8.813649 | — 78.504100 | — 89.471708 | — 101.877940 | — 115.904082
2 +106.661156 | - 125.606559 | - 147.628319 | - 173.192498 | + 202.832143
3 . 110.216528 | — 133.080330 | — 162.301151 | — 196.284831 | — 236.637500
4 4+ 85.417809 | -+ 107.184264 | - 133.972700 | 4 166.842106 | + 207.057813
5 | — 52.059042 | — 68.597929 | — 88.421982 | — 113.452632 | — 144.940469
6 + 927.362172 | 4 36.585562 | + 48.632090 | | 64.280825 | | 84.548607
7 — 12.117533 | — 16.724828 | — 22.926557 | — 31.226486 | — 42.274302
8 4+ 4.695544 | - 6.689931 | -+ 9.457205 | -4 13.271257 | - 18.495008
9 — 1.617354 | — 2.378642 | — 3.467642 | — 5.013586 | — 7.192503

10 4+ 0.501380 | + 0.761166 | + 1.14432% | 4 1.704619 | 4 2.517376

11 — 0.141208 | — 0.221430 | — 0.343297 | — 0.526882 | — 0.800983

12 4+ 0.036502 | + 0.059048 | - 0.094407 | 4- 0.149283 | + 0.233620

13 —  0.008704 | — 0.014535 | — 0.023965 | — 0.039043 | — 0.062898

14 4+ 0.001927 | 4+ 0.003322 | - 0.005649 | 4 0.009482 | + 0.015724

15 —~  0.000398 | — 0.000709 | — 0.001243 | — 0.002149 | — 0.003669

16 4 0.000077 | + 0.000142 | + 0.000256 | + 0.000457 | 4 0.000803

17 —  0.000014 | — 0.000027 | — 0.000050 | — 0.000091 | — 0.000165

18 4+ 0.000002 | + 0.000005 | 4+ 0.000009 | + 0.000017 | - 0.000032

19 i — 0.000001 | — 0.000002 | — 0.000003 | — 0.000006

20 -+ 0.000001 | + 0.000001

x y =—36 y =—37T y =-—38 y=—39 y =—40
0 4 36.598234 | 4 40.447304 | + 44.701184 | + 49.402449 | + 54.598150
1 —1381.753644 | — 149.555026 | — 169.864501 | — 192.669552 | — 218.392600
2 | +237.156559 | - 276.861798 | |- 322.742552 | +- 375.705626 | -+ 436.785200
3 __984.587871 | — 341.462884 | — 408.807233 | — 488.417314 | — 582.380267
4 + 256.129084 | - 315.853168 | - 388.366871 | + 476.206881 | -+ 582.380267
5 —184.412940 | — 233.731344 | — 295.158820 | — 371.441367 | — 465.904214
6 +110.647764 | + 144.134329 | -+ 186.933921 | -+ 241.436889 | - 310.602809
7 — 56.904564 | — 76.185288 | — 101.478414 | — 134.514838 | — 177.487319

'8 + 25.607054 | + 35.235696 | 4 48.202246 | - 65.575984 | - 88.743660
9 . 10.242822 | — 14.485786 | — 20.352060 | — 28.416260 | — 39.441627

10 4+  3.687416 | + 5.359741 | + 7.733783 | + 11.082341 | 4+ 15.776651

11 — 1.206791 | — 1.802822 | — 2.671670 | — 3.929194 | — 5.736964

12 4+ 0.362037 | - 0.555870 | + 0.846029 \ + 1.276988 | + 1.912321

13 ——  0.100256 | — 0.158209 | — 0.247301 | — 0.383096 | —  0.588407

14 + 0.025780 | 4+ 0.041812 | 4 0.067125 4+ 0.106720 | + 0.168116

15 —  0.006187 | — 0.010314 | — 0.017005 | — 0.027747 | — 0.044331

16 + 0.001392 | 4+ 0.002385 | - 0.004039 | + 0.006763 | + 0.011208

17 —  0.000295 | — 0.000519 | — 0.000903 | — 0.001552 | — 0.002637

18 4+ 0.000059 | + 0.000107 | 4~ 0.000191 | -+ 0.000336 | + 0.000586

19 —  0.000011 | — 0.000021 { — 0.000038 | — 0.000069 | — 0.000123

20 -+ 0.000002 | - 0.000004 } -+ 0.000007 | 4+ 0.000013 | 4+ 0.000025
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5. SOME APPLICATIONS OF THE METHOD OF STATISTIC
EQUILIBRIUM IN THE THEORY OF PROBABILITIES

From the Sixth Scandz ian Math ticians’ Congress in Copenhagen, 1925 ; a lecture.

The problems of which I shall speak to-day belong to the Theory of
Telephone Management, which is a branch, a comparatively new one,
of the theory of probabilities. Accordingly we have to deal with telephone
lines, telephone conversations, telephone exchanges, either manual or
more or less automatic, and so on. The main thing is, however, the calls
of the subscribers and their different fates. Some calls are “lucky” and
obtain immediately the connexions desired, other calls are ‘“‘unlucky”
and either obtain no connexion or will have to wait a certain time. The
reasons are various: the person called may be occupied with another
telephone talk or otherwise; all the lines connecting the two exchanges
are, momentarily, occupied by other conversations; or the telephone
operators have not yet finished the work caused by preceding calls. In
order to understand the real nature of the important practical questions
arising in the manner indicated by these examples, one must undertake
a theoretical work, based on the methods of probability; and this was
shown, for the first time, about 20 years ago, by Mr. F. Johannsen, Manag-
ing Director of the Copenhagen Telephone Company. Within a short time
he succeeded in throwing light upon several questions immediately
urgent then and at all times important, and also in awaking a lively
interest in this new field of research. Later on, owing to pressure of other
work, he wished to leave the continuation of the work out of his hands,
although not out of his eye-view and interest, and, therefore, trusted
me with it; a task which has caused me much joy. I have reported the
progress of the matter in several papers from 1909 onward, in Danish
and other languages. In these I have given especially the exact resulting
formulae of the most important and typical problems, also many tables
with numerical results, but, for the sake of brevity, not always the com-
plete demonstrations. See for instance a paper, printed in “Elektrotek-
nikeren”, 1923, and somewhat enlarged in “Annales des P. T. et T.”, 1925;
it was originally a lecture delivered at the H. C. Orsted Centenary, 1920,
and was also printed in the reports of this meeting, section electrotechnics,
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Table 1.
- POISSON'S FORMULA BINOMIAL DISTRIBUTION
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1922. In this paper may be found references to several contributions to
the study of this class of problems, and to my own earlier papers. I will
not state very many formulae, on this occasion, and not at all enter upon
their numerical results; but I will lay stress on the method of reasoning,
especially what may be called the method of statistical equilibrium, for
~ obtaining distribution-laws.

1. We have to consider, at first, some very simple laws of distribution.

We define the “traffic-intensity’ as the product of the number of calls
per unit of time into the holding time (the duration of the telephone
conversation). It is, however, more convenient to take the unit of time
equal to the duration of the conversation; the traffic-intensity is then
simply equal to the number of calls per unit of time. We may suppose,
for the present, that the duration is constant. If not, we have to speak
of the mean duration instead of the duration. For the traffic-intensity we
use the designation y.

Now we have to consider 3 cases, differing in respect of the number and
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Table 2.

5] AN_ARRANGEMENT OF THE CONNECTIONS - BETWEEN C AND A.,B

7] 2 SPECIAL LINES, | COMMON LINE (BETWEEN A AND B.C)

arrangement of the lines. In the first case we suppose that the number
is so large that a want or shortage of lines will never occur, when the
traffic-intensity is y. Now we put the question: What is the probability
of 0, 1, 2... calls during a time equal to 1, or in a more tangible form,
what is the probability of finding, at an arbitrary moment, 0, 1, 2...
lines occupied by conversations? (It is obvious that the mean number
of occupied lines is equal to y). For the probabilities of the different cases
we may use the designations ((0)), ((1)), ((2)). . ., reserving the designations
(0), (1), (2)... for the cases themselves. We can solve this problem, and
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likewise the following ones, in such a way that we find first the relative
values of the probabilities and afterwards the absolute values (the sum of
which is 1). We may use a graphical representation (see table 1); the differ-
ent cases are here represented by a series of small circles, the transitions
between the (successive) cases are indicated by connecting lines with
arrows, and the probability-densities of the transitions per unit of time
by the inscriptions. By means of a series of equations, which express the
conditions of equilibrium or balance, we find easily the following relative
values of the required probabilities, beginning with 1:

If we divide by ¢’, which is the sum of this series, we find the absolute
values (see table 6), and we have now reached Poisson’s law, which was

originally, and is usually, derived in another way.
s

3

Among many remarkable properties of Poisson’s function ;
x!

I name one here (although it is not possible to enter upon its applications):
If we consider the usual double-entry table of this function and take
out all the values to be found along an oblique line, the slope of which is

a, the sum of the values will be equal to : , for 0 <o <1 (and

—_—

also for some other, not positive, values of ). This is a direct consequence
of a theorem given in 1902, in Acta Mathematica, by the late Dr. Jensen,
who through many years was the Chief Engineer of the Telephone Com-
pany, as we have just been reminded, and whose eminent position among
Scandinavian Mathematicians is known to all present.

The next two problems are not quite so simple; they are in a certain
way contrasts. The lines which go out from the telephone exchange,
radiating in all directions, to the houses of the subscribers, are mutually
independent. On the other hand, the lines or junctions which connect
two exchanges, are cooperating; they are said to form a group or bundle.
In the first of these two cases, a similar line of thought as the above will
carry us into the binominal law of distribution, the law of Pascal and Ber-
noulli. Let n be the number of lines, B the traffic-intensity, or the number
of calls per unit of time, per free line. We find the relative values of prob-
- abilities to be '

n(n—1) n(n—1)(n—2)

. . 2 . 3
1s pn; B o P 31
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And then we obtain the absolute values by division by (1 4 B)*. In
1 B
and ——; if instead
148 148
of these quantities we put ¢ and p, respectively, we may at once give
the main result the perhaps more familiar form:

the specially simple case n == 1 we obtain

,pm—1) o n(m—I1)(n—2)
p — PR

21 7 ‘ 3!

n—2

7" " g

(It is easy to show that these results do not necessarily imply the hypo-
thesis of constant duration).

Now let the lines go side by side and form a group, within which each
line may replace each other; a case more important than the preceding.
Let z be the number of lines. In this case the inflow of fresh conversations
will not decrease gradually in proportion as the lines are occupied, but
the moment all lines are busy, and only then, the inflow will suddenly
stop. We find for the required probabilities (again by use of the equilib-
rium-principle) firstly the relative values

T

y: ooy Yy

l; y; —5 =—.... —
!;/’ 2!7 3! x!,

and, hence, secondly, the absolute values (see the collection of formulae,
table 6). As the probability of finding all lines occupied is the same thing
as the proportion B of “unlucky” or “lost” calls to all calls, sometimes
called the degree of hindrance or obstruction, it is much more important
in practice than the other ones. — The product B - y is the number of lost
calls per unit of time. If the difference of this quantity with respect to
x is fixed to be about a certain constant (depending on the price of a line
per unit of time and on the value lost with the call), then we may say
that « has been correctly determined, as a function of y. But we must
leave the further consideration of this theme.

It will now be necessary to insert here some remarks about the law
of distribution (or frequency) of the durations. For although in many
cases, for instance in the case just considered, the results are really in-
dependent of the nature of the distribution, it does not follow that the
demonstration can be given with the same words, or as easily, for one
law as for another. The laws which mostly deserve our attention may be
seen in the collection of formulae table 6; they constitute an infinite
series, and the successive terms are marked 7 =1, T =2... T = oo.
As stated here, the formulae give the probability of a duration greater
than n (the mean duration is always equal to 1); by a differentiation one
may obtdin the density of probability, which is another expression of
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Table 3.

WAITING TIMES
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the law. Compare table 5. The simplest and most important law is, no
doubt, the first one; we come to this law if we suppose that the “force
of mortality”’ (we borrow this word from another domain) is independent
of the “age”. About 200 years ago it was commonly believed, in Den-
mark at least, that the probability of death within a year was the same
for all ages. We know that this is wrong; although no doubt some causes
of death will hit the young and the old indifferently. But the life of a
telephone conversation comports very well with the simple rule, as borne
out by practical tests. Only some very special classes of conversations,
for instance those caused by the communication of the “number” to the
telephone operator, must be excepted, as they will not agree with this
law, but more closely with one of the following ones. For the rest all these
laws are closely related. For instance, No. 2 may be taken as the law of
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Table 4.

4] HALE POSITIONS _SMALL GROUPS T=1

e ~ Y
1 OPERATOR ¢ § 2 OPERATORS 9] 3 OPERATORS )

5)  HALF_POSITIONS IMPROVED SYSTEM

1 OPERATOR 2 OPERATORS 3 OPERATORS

6/ FOR_COMPARISON

f OPERATOR 2 OPERATORS 3 OPERATORS

the duration of a compound conversation, if the two components are of
the type No. 1, with a mean duration of %, and so on. Conversely, the
“compound” conversations may be dissected into simple ones, and in .
this manner we may simplify many problems. The expressions of the prob-
ability of a duration exceeding n may now be written down immediately
(by means of Poisson’s formula). The limiting case, 7' = oo, is obviously
identical with the case of constant duration.

Now we return to the demonstration postponed and start with the
assumption 7' = I; here it is possible to treat each of the cases (0), (1),
(2)... (x) (that is to say 0, 1, 2... z lines occupied) without regarding
the respective ages of the conversations, and accordingly the demonstration
is straightforward. On the other hand, if 7' = oo, the ages, or better the
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Table 4.
DURATION OF A TELEPHONE CONVERSATION:
DIFFERENT POSSIBLE LAWS OF DISTRIBUTION.
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residual lifetimes, are important and must be specified; for this purpose
we may use, for z = 1, 2, and 3, respectively, a line-segment, a square,
and a cube. For z = 2, for instance, we may place a point within the
square, or on the sides OA and OB, or in the corner O. If, now, we use
an infinite number of points, if, further, we strew evenly all parts of the
square, and also evenly all points of the sides O4 and OB, not forgetting
the corner point O, and if we choose properly the relative probabilities
of the three main cases, then (and only then) we can easily show the
existence of a statistical equilibrium. This equilibrium is caused by all
the changes forthcoming as a consequence either of the progress of time
or of the arrival of new calls. — If > 3, we must do without a figure,
but otherwise we can reason in the same manner.

I should like to give also a proof comprehending at once all laws of
distribution; I will only say that it is suggested by a comparison of the
two cases; firstly an infinite number of lines, secondly, z lines; the relative
values of the x probabilities ((0)), ((1)), ((2))... ((x)) are, and must be,
the same in both cases.

2. We will consider a few different line-systems, most of them a little
more complicated than the preceding ones. In the figure 3 (table 1) an
important case is represented; it is, in a way, a combination of the two
just treated. We see, to the right, z lines running side by side, between
the two points (exchanges) 4 and B, and to the left we see n lines (sub-
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scribers’ lines) radiating in all directions to the points C,, C,... C,.
The calls may originate from the left or from the right, indifferently. The
traffic-intensity, or the number of calls per unit of time, per subscriber
(unoccupied) is B. We can have here, at most, x conversations running
at the same time. We easily find the fundamental probabilities ((0)),
(1)), ((2))- - - ((%)), and afterwards other probabilities, the most important
being the probability of the existence, or non-existence, at an arbitrary
moment, of a free way C-A-B between a certain subscriber C and the
exchange B.

In fig. 4 we have a system of z lines, which constitute a group. Each forth-
coming call will try (automatically) a number & of the lines (not all the
lines); if the k lines are engaged, the callis lost. For the rest, the choice of
the % lines is a new one for each subsequent call, and upon the whole,
they are selected in as many ways as possible. The figure indicates the
beginning of the solution of the problem; the resulting formulae and
also numerical tables have been given elsewhere. This system belongs to
a type ordinarily named “systems with ‘interconnecting’ .

In fig. 5 we have a group of 3 lines between A and B, 7 between B and
C; O is the main telephone-exchange, to which or from which (almost) all
the traffic is going; the traffic y between B and C, and z between 4 and C.
The different possible cases are represented in the oblique quadrangle as
circles; the cases represented at the top of thisfigure and to the right are
especially important. The conditions of equilibrium may be written down
by considering the “transitions” between each case (circle) and its sur-
roundings in the figure. The same relative values may be derived in a
simpler way, if we consider the horizontal or vertical connecting lines, one
at a time; for each single line we find (in this problem) a special balance.

The problem of fig. 6 is of a similar type.

The problem of fig. 7 is one resolved by Dr. A. E. Vaulot (in Revue
Génerale de I'Electricité, 1924); we have here 2 special lines, 4B and
AC, and a common line acting as a reserve for both.

3. Let us consider a group of z lines, with a traffic intensity y. Let us sup-
pose that a call, which cannot obtain a line at once, will keep waiting and
thereby obtain a line, in its turn. For simplicity, we consider here only the
hypothesis 7' = 1. The series of possible cases is not limited to (0), (1) ... (z),
but it goes on with, (x 4 1), (z 4 2) ..., that is, in addition to the calls
which have already found a connexion, we may have 1, 2. .. calls waiting.
See table 3. — We easily find the required probabilities ((0)), ((1)) ...
(@), ((z + 1)), ((x + 2))...; the last ones, from ((x)) onward, are the
most interesting. In table 7 are found the expressions of these by means
of their sum ¢, and further the expression of ¢ by D () and D (x — 1),
defined at the same place as functions of z and v.

14
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Table 6.
POISSON’S FORMULA BINOMIAL DISTRIBUTION
(A large number of lines). (n independent lines).
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Table 7.
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WAITING-TIMES
(A group of z lines, 7' = 1).
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Now we are able to find also the probability, 8 (> n), of a waiting-
time exceeding n. If we take a view of the chances of this eventuality,
we see at once that these depend partly on the number of calls waiting
already, partly on the number of conversations coming to an end in the
course of the time n. We find the probability in question in the shape
of a doubly infinite series and by summation we get the result:

S(>mn)=c-e @Nn

Turther, it is very desirable to find the mean waiting-time M ; one
can perform this in different ways, f. inst. by means of the formula just
mentioned, or else more directly by means of one of the two equations
(each of them easily found):

M=[1-((w+1>>+2-((w+2>)+3-((w+3>)...]%

: \ 1
M=[1-(@)+2 ((@+1)+3 (@+2)...] —

In each of these ways we find:

j ——
r—Y

We have supposed, that the lines when disengaged are given to the
waiting calls in turn. If, however, they are allotted purely at random
which is often the case in practice, we have to deal with another (and
more difficult) problem; mark that both S (> 0) and M retain the same
values as formerly.

Another modification of the problem is met with, if a certain fractional
part of the callers will not wait, and the rest will wait (see fig. 2). It is
easy to find out the consequences of this, for the one and the other part.

4. All the just mentioned results concerning waiting-times are valid
not only for a group of x lines, but also for a group of z operators, whose
common task it is to set up the connexions required by a number of sub-
seribers. As is well known, it is possible to build up a telephone-system
for a large town without operators. But the technical investigations
undertaken especially by Mr. P. V. Christensen, Chief Engineer of our
Company, have shown that the economy is doubtful at least in the case
of Copenhagen; also by the “automatic” system a great amount of work
is laid upon the subscribers themselves. For the present, and probably
in the future, the operators will be retained in Copenhagen, but auto-
matic devices are provided for the distribution of the calls, in order to
direct each call to an operator who either is ready or, at least, probably will
“be ready very soon. The systems used in the most modern parts of our
main telephone-exchange and also in some other exchanges, are called
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Table 8.
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AUTOMATIC DISTRIBUTION, HALF-POSITIONS; BIG GROUPS
Supposition: Half chance, if one half-position is unoccupied.

T=1 T=2 T =3
(0) | ((0)=1-a |((0)=1-a ((0)=1-a
(@) [ () =2u-a | (1) =2u-a (1) =2p-a
((2)) | ((2)) =2p%-a | ((2) = 2p+2p%)-a | ((2)) = (2p+2p%) - a
((3)) ((3)) = (4p®+2p%) - a | ((3)) = (2p+4p*+2p%) -
((4)) ((4)) = (22424 - @ | ((4)) = (Bu2-+6u3+2u) - a
((5)) ((5)) = (4p>+6p2+2p4) - @
((6)) ((6)) = (2p2+4p+-2p%) - a
1122t = | Ifdp 8 bapd = | 1-6ut18u 1804 6ut—
o | 1+2p (I4p) | 144 (14-p)? 1+6p (14p)?

Supposition: Full chance, if one half-position is unoccupied.
(For comparison with the above).

T=1 T =2 T=3
((0) | () =1-a | ((0))=1-a ((0)) =1-a
(M) | () =va | ((1))=v-a (1)) =v-a
((2) | (@) =2»0a | ((2)=@E+*-a ((2)) = (v+2%) - a
((3)) ((3) = (22+v*)-a | ((3) =(+2"+%)-a
((4)) ((4)) = (»*+%) - a ((4)) = (3v*+3v3+2%) - a
((5)) ((8)) = (2" +3v*+v%) - a
((6)) ((6)) = (¥ +2v++*) - a
1 14v+rv? = 14-2v+4124-213 = 1-+3v+92 93 3pt=
o | 14+v(14w) 142y (14v)? 143y (14-v)3
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“half-position systems”. Each operator has two ‘“half-positions”; the
half-position which she is serving at the moment is barred for access, -
the other one is free, if no call is waiting there, and barred if one call is
waiting. (Instead of giving the operator two half-positions it is, of course,
_also possible to -give her three third-part-positions, and so on). If we
will study this system closely, we notice that two modifications present
themselves naturally for choice: the operator, who has one half-position
unoccupied, may have just the same chance as the operator who has two,
or she may have only half a chance; the last arrangement is generally
preferred in practice. We may very often content ourselves with studying
the case of a large group of operators, which is relatively simple. We
may further suppose 7' = 1, or 2, or 3.... The different stages or degrees
of occupation of an operator are represented in fig. 3, table 3, by the
circles. In table 8 is further shown how to find the corresponding funda-
mental probabilities; and the formulae hence resulting, of S (>) and of
M, are shown in table 9.

For small groups of operators, f. inst. for x = 1, 2, 3...., the problem
is somewhat more difficult, and therefore I have treated it only with
the supposition 7' =1 (and only the half-positions, not the third-part
positions, &c.). See figs. 4, 5, 6, table 4. In one of these ﬁglires,
fig. 5, is shown a new and improved form of the half-position system.
In this system an operator, who has only one half-position free, has
absolutely no chance of being chosen if, at the same time, it is possible
to find an operator who has two. The manner of action of this system
will be clearly indicated by the figure.

If time had permitted, it would have been interesting to draw some
connecting lines into other known applications of the conception of sta-
tistical equilibrium. I can just name: 1) Euler’s theory on the age-distri-
bution of a population, about 1750, see Opera, series 1, vol. 7; a special
case already treated by Halley; new contributions by Lotka and by
Nybolle; 2) Mazwell’s famous law of distribution for the velocities of gas
molecules (an elementary proof, by myself, in “Fysisk Tidsskrift’ 1925);
and 3) the very interesting researches on the ultimate consequences of
Mendel’s laws of heredity, by Hardy, Hagstrom, Bernstein. .



6. ON THE RATIONAL DETERMINATION
OF THE NUMBER OF CIRCUITS

Written in 1924. First published in the present book.

1. Systems With Barred Access.

One might, perhaps, think that, for the determination of the number of
circuits required, z, for a certain amount of traffic, y, or wvice versa, it
would be necessary to know only the formula of the probability of barred
access:

‘y_ﬂl
z!
B = y2 "ljx’ (1)
21 z!

combined with accordance in opinion as to the fixing of a suitable value
of B; in that case, a table of the co-ordinate values of x and y would be
sufficient. There are, however, the following points to be considered: in
the first place, B must be multiplied by y (y designating the number
of calls being originated during the unit of time, ¢. e. the average length
of conversation), whereby the number of calls being barred during the
unit of time is obtained; furthermore, it is not exactly B -y we want,
but the reduction of B -y that will take place the moment we increase
the number of available circuits by I; this reduction we may call the
“Improvement,” F; (in Danish: “Forbedringen’). When B (x — 1) and
B (z) denote the values of B corresponding to # — 1 and «, the improve-
ment caused by the transition from x— 1 circuits to = will be, then,

Fi=y-B@—1)—y- B(@) (2)

Table 1 gives F, for different values of z and y. (There are special reasons
— which will be obvious later — for the method according to which. the
values of y have been selected). It will be noticed that F; decreases gradu-
ally as z increases. In order to find the particular value of x that is neither
too great nor too small (for a certain value of y), it will be necessary to

use a certain value of F'; as our basis, and seek out in the table the place
where one of two consecutive values of F, is slightly greater, and the other
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slightly smaller, than the basis value of F,. In determining this basis
value of F,, allowance must be made for the inconvenience caused by
preventing a call from getting through (this may be expressed in terms
of money); also, for the costs per unit of time being incurred owing to
‘the new circuit; the said costs comprise interest on the invested capital,
depreciation, and maintenance of the circuit with accessories). If the em-
ployment of this, the most direct, method should give rise to any difficul-
ties, it is of course possible to use another method; a single well-matched
set of values of x and y could be taken as starting point; the values of
I, for the said values of  and v could be found in the table; and the
rest would pass off as described above. In all essentials, this chain of
reasoning applies to the circuits interconnecting two exchanges as well
as to the lines between the exchange and a subscriber with several lines.

Note: Instead of the above mentioned (exact) procedure, another
(approximative) method may be used; the latter is especially useful and
convenient for the greater values of # and y. The approximation im-
proving with increasing values of z, we get:’ o

h-¢ ¢
Fi=—11 3
PR ®)
where - .
w=y + hly (4)

(here, ¢ and ¢_, denote simple and wellknown functions of %, viz. the
Gaussian law-of-error function and its integral). The above shall not
be proved here; but its correctness will appear rather clearly from the
main table, 1, by traversing the latter along oblique lines issuing from the
left-hand top corner. In consequence of the manner in which the values
of y as contained in the table have been chosen, we have all along each
. linex =9 + k]/y, where % is constant. The values of F'; are approximately
constant along such a line, especially for the greater values of x, and
consistent with formula (3).
A formula of the type

s=y+hly

has already been employed for a long time in our Company to determine
the number of junctions?), although without any absolutely satisfactory
statement of reasons, as far as I know. The reasons can now be explained
by means of the foregoing, also the proper significance of the constant h.

1} This formula was published by P. V. Christensen in 1913 (see the foot-note p. 16).
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Table 1. The improvement F;. (Formula 2).

z—y |y=1|y=4|y=9|y=16 |y=25|y=2386 | y=49 | y=064 | y=81 | y=100
0 |0.5000| 0.5601| 0.5837| 0.5963 | 0.6040| 0.6092| 0.6131| 0.6159 | 0.6181| 0.6200
1 [0.3000] 0.4464] 0.5072| 0.5389 | 0.5582| 0.5714| 0.5807| 0.5878 | 0.5933 | 0.5975
2 |0.1375] 0.3276| 0.4242| 0.4770| 0.5094 | 0.5311| 0.5465| 0.5580| 0.5671| 0.5742
3 |0.0471] 0.2177) 0.3397| 0.4121| 0.4577 | 0.4884| 0.5104| 0.5269 | 0.5394| 0.5495
4 0.0123 0.1293| 0.2581| 0.3463 | 0.4045| 0.4444 | 0.4731.| 0.4945 | 0.5111| 0.5244
5 |0.0026] 0.0683| 0.1856| 0.2821 | 0.3506| 0.3691 | 0.4345| 0.4612 | 0.4819| 0.4983
6 | 0.0004] 0.0321] 0.1252| 0.2221 | 0.2977| 0.3537| 0.3953 | 0.4270 | 0.4517| 0.4713
7 10.0001| 0.0135! 0.0793| 0.1684 | 0.2471| 0.3086 | 0.3558| 0.3923 | 0.4210| 0.4441
8 0.0051| 0.0471| 0.1229| 0.2001| 0.2650| 0.3167 | 0.3575| 0.3900 | 0.4162
9 0.0018| 0.0263] 0.0861 | 0.1579| 0.2237| 0.2785| 0.3229 | 0.3588 | 0.3881
10 0.0006| 0.0138] 0.0579 | 0.1213| 0.1854| 0.2419 | 0.2891| 0.3279 | 0.3599
11 0.0002| 0.0067| 0.0374| 0.0906| 0.1507| 0.2071| 0.2561| 0.2974| 0.3320
12 0.0001| 0.0032] 0.0231| 0.0658 | 0.1201| 0.1749| 0.2246| 0.2676; 0.3043
13 0.0014] 0.0138| 0.0464| 0.0938| 0.1456 | 0.1948 | 0.2388| 0.2769
14 0.0006| 0.0079 | 0.0318| 0.0718| 0.1192| 0.1671| 0.2113 | 0.2506
15 0.0003| 0.0044| 0.0212| 0.0538 | 0.0963 | 0.1417| 0.1853| 0.2251
16 0.0001| 0.0023| 0.0138| 0.0394| 0.0765 | 0.1186| 0.1610| 0.2008
17 0.0012| 0.0087| 0.0283 | 0.0698| 0.0982; 0.1386 | 0.1778
18~ 0.0006 | 0.0054| 0.0199 | 0.0460| 0.0802| 0.1181| 0.1561
19 0.0003 | 0.0032| 0.0138| 0.0348 | 0.0647| 0.0997| 0.1361
20 0.0001 | 0.0019| 0.0093 | 0.0260| 0.0616| 0.0833| 0.1177
21 0.0001 | 0.0011| 0.0062| 0.0190| 0.0406| 0.0689 | 0.1009
22 0.0006| 0.0040| 0.0137| 0.0815| 0.0564 | 0.0859
23 0.0003 | 0.0026| 0.0097 | 0.0242| 0.0457 | 0.0724
24 0.0002| 0.0016| 0.0068 | 0.0183| 0.0367| 0.0606
25 0.0001 | 0.0010| 0.0048] 0.0137| 0.0291| 0.0502
26 0.0006 | 0.0032| 0.0101| 0.0229 | 0.0413
217 0.0004 | 0.0021| 0.0074| 0.0178| 0.0337
28 0.0002 | 0.0014| 0.0053| 0.0137| 0.0272
29 1 0.0001| 0.0009 "0.0038| 0.0104| 0.0218
30 0.0001 | 0.0006| 0.0027| 0.0079 | 0.0173
31 0.0004 | 0.0019| 0.0059| 0.01386
32 0.0002| 0.0013| 0.0043| 0.0107
33 0.0001 | 0.0009 | 0.0032| 0.0083
34 0.0001 | 0.0006 | 0.0023| 0.0063
35 0.0001| 0.0004 | 0.0017| 0.0048
36 0.0003 | 0.0012 | 0.0037
37 0.0002 | 0.0008 | 0.0027
38 0.0001 | 0.0006 | 0.0020
39 0.0001 | 0.0004| 0.0015
40 0.0003 | 0.0011
41 0.0002 | 0.0008
42 0.0001 | 0.0006
43 0.0001 | 0.0004
44 0.0001 | 0.0003
45 0.0002
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2. Systems With Delay.

Here, as in the preceding section, we must find out about the improve-
ment obtained by adding 1 circuit to those already existing.

We may start from the average delay formula for z lines, supposing
exponentially distributed holding time: -

1
M(x):x——y-D(x)—D(x—l)’ ©)

where

1 ' 1
D) =—— d De—1)= ———
@=Fm ™ =D =re—1
and B (z) and B (z — 1) have the same significance as above. Since, on
the average, y calls are originated during the unit of time, we have to
multiply by y, and so we get:

Y 1

v M) = D) D=1y

which is the total average delay per unit of time, or, if you like, the mean
number of simultaneously waiting calls. For x — 1 we have, correspond-

ingly,

Hence, by transition from z — 1 to x circuits the improvement will be:

y . 1 b . 1 6
—1—y D@x—1)—D(@x—2) =xz—y D(sc)—D(rc—l)'()

Fzzy-M(m—l)—y-M(x):m

Table 2 is a table of the quantities F, thus determined. As was the case
in the above, F, will be found to decrease as x increases; consequentially,
there must be an optimum point where F, will about balance against the
costs in connexion with adding one more circuit,” or, expressed more
exactly, the next improvement will be just too small to justify the costs
of another new circuit. Although the word circuit has been used all along,
it should be remembered that the delays may as well be due to the si-
multaneous engagement of each of a group of teamworking operators,
instead of a group of cooperating circuits; and this leads to the question,
How many operators should be set to work the traffic concerned? Mr. K.
Moe has been working on this problem; as might be expected, his
reasoning and procedure — although somewhat different in form — in
reality agree with the above.
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The results as stated in table 2 may be interpreted very clearly and
plainly if we, in the following, rather stick to the last mentioned ap-
plication of the theory. The whole problem consists of two points: the
subscriber’s waiting time, receiver in hand; and the operators’ hours of
service at the exchange (not exactly the time they are actually working
their positions). It is necessary to have a certain basis value of ', in order
to take full advantage of the table; now, it is obvious that if we put
F, =1, it means that an average subscriber’s waiting time at his tele-
phone is rated at the same value as the operator’s hours of service ab
the exchange; F, = 4 means that the subscriber’s time is twice as valuable,
&ec. . ’

Note: Here, too, another (approximative) method may be used instead
of the (exact) procedure just mentioned, the former being espemally
useful and convenient for great values of z:

¢ (14 b2+ ¢, b (2h + 77
¢+ hp_y)2-ht
x=y-+hly (8)

7y =

(7)

The proof of this shall not be given here; but its correctness will appear
rather clearly from the main table, 2, by transversing the latter along
oblique lines issuing from the left-hand top corner. In consequence of
the manner, in which the values of % as contained in the table have been
chosen, we have @ — y -+ Ay all along such a line. Tt will be noticed
that the values of F, are approximately constant along such a line, espe-
cially for the greater values of z, and consistent with formula (7).
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Table 2. The improvement F,. (Formula 6).

v
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z—y ly=1|y=4|y=9| y=16|y=25| y=386| y=49 | y=64 | y=81 | y=100
2 | 0.288 1.647| 4.081| 7.545 | 12.025 | 17.505 | 23.995 | 31.487 | 39.961 | 49.465
3 | 0.039| 0.389 1.139| 2.257 | 3.726 | 5.537 | 7.689 | 10.181 | 13.007 | 16.168
4 | 0.006| 0.121| 0.443| 0.968 | 1.680 | 2.570 | 3.634 | 4.864 | 6.272 | 7.845
5 | 0.001| 0.040| 0.194| 0.477 | 0.907 | 1.400 | 2.026 | 2.760 | 3.596 | 4.532
6 0.013| 0.088| 0.251 | 0.500 |- 0.830 | 1.236 | 1.715 | 2.263 | 2.884
7 0.004| 0.040! 0.136 | 0.296 | 0.517 | 0.795 | 1.128 | 1.514 | 1.951
-8 0.001| 0.018| 0.074 | 0.176 | 0.331 | 0.530 | 0.771 | 1.053 | 1.374
9 0.008| 0.040 | 0.109 | 0.216 | 0.360 | 0.539 | 0.751 | 0.997
10 0.003| 0.022 | 0.067 | 0.142 | 0.248 | 0.384 | 0.548 | 0.727
11 0.001! 0.012 | 0.040 | 0.094 | .0.172 | 0.276 | 0.403 | 0.554
12 0.001| 0.006 ' 0.024 | 0.062 | 0.120 | 0.200 | 0.301 | 0.421
13 0.003 | 0.015 | 0.040 | 0.084 | 0.145 | 0.225 | 0.321
14 0.002 | 0.009 | 0.026 | 0.058 | 0.106 | 0.169 | 0.248
15 0.001 | 0.005 | 0.017 | 0.040 | 0.077 | 0.127 | 0.191
16 0.003 | 0.011 | 0.028 | 0.056 | 0.006 | 0.148
17 0.002 | 0.007 | 0.019 | 0.040 | 0.072 | 0.114
18 0.001 | 0.004 | 0.013 | 0.029 | 0.053 | 0.088
19 0.003 { 0.009 [ 0.021 | 0.040 | 0.068
20 0.002 | 0.006 | 0.015 | 0.030 | 0.052
21 0.001 | 0.004 | 0.010 | 0.022 | 0.040
22 0.001 | 0.003 | 0.007 | 0.016 | 0.031
23 0.002 | 0.005 | 0.012 | 0.024
24 0.001 | 0.004 | 0.009 | 0.018
25 0.001 | 0.002 | 0.006 | 0.014
26 0.002 | 0.005 | 0.010
27 0.001 | 0.003 | 0.008
28 0.001 | 0.002 | 0.006
29 0.001 | 0.002 | 0.004
30 0.001 | 0.003
31 ! 0.001 | 0.002
32 i 0.001 | 0.002
33 0.001
34 0.001
35 ; 0.001




7. A PROOF OF MAXWELL’S LAW,
THE PRINCIPAL PROPOSITION IN THE KINETIC THEORY
OF GARSES

First published in “Fysisk Tidsskrift” Vol. 23, 1925, p. 40.

1. In the sixties of the nineteenth century, the old inconsistent and
vague notions of the molecules of the gases were superseded by a positive
theory (Maxwell, Boltzmann), and the head stone of this theory is the
Maxwellian Law of Distribution. This came to be the initiation of an
entirely new view of, and working method in Physics, viz. the view and
method based upon the Theory of Probabilities generally known, of late
years, as the “Statistical Method”. For many years it had to face the
misapprehension, indifference, and antagonism of a mighty school oF
natural scientists; but then one must admit that this aversion has been
done away with in the present century, and the new methods are now,
undoubtedly, recognized as the only serviceable with respect to a steadily
growinig number of phenomena, including the electrical. It is now rather
obvious that the old manner of dealing with problems such as the prin-
ciples of the Theory of Heat is not satisfactory, and that paths leading to
better comprehension can be found. A concurrent of the change that
has occurred was, of course, the experimental investigations that gradu-
ally banished any doubt as to the actual existence of the molecules as
individuals, and their possession -— to some extent, at least — of the
properties upon which the theories were based (Christiansen, Knudsen,
Perrin, and others). It is a matter of course that this development is not
only physically significant; it must interest, also, those who work with,
the Theory of Probabilities and its applications on the whole, as indicated
by the literature of recent years. )

It admits of no doubt whatever that many people must have wanted
to partake of the understanding thus attained. One might, perhaps, ex-
pect to find in the more recent manuals on physics, if not a thorough
discussion of problems belonging here (such as diffusion, currents in gases,
thermal conduction, the two specific heats) — which questions, by the
way, have as yet hardly been treated in a quite unchallengeable manner,
on the given presuppositions —, then at least a simple and clear proof
of the Maxwellian law of distribution. Any such proof is seldom or never
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to be found, however; even special works on the Kinetic Theory are of
no avail in this respect. I have therefore put down in writing the following
proof which is based upon the very simplest and most well-known math-
ematical and mechanical theorems (I have not even wused, e. g., the
Principle of Energy); consequentially, I believe, the characteristics of
the reasoning stand a better chance of being recognized.

2. Presuppositions about the Nature of the Molecules and the Effects of
the Collisions.

The molecules are all alike; they are hard, smooth, elastic spheres;,
and they are homogeneous or, if you like, their distribution of mass is.
mechanically equivalent to that of a homogeneous body. They move in
a large space, with constant velocity along straight lines so long as no
collisions occur. As usual, the velocity may be represented by a vector
going out from the centre of the sphere. We make no special presuppo-
sitions as to the size of the spheres in proportion to the distances. Tt may
be advantageous to replace the three-dimensional domain (space) which
we are dealing with, strictly speaking, with a two-dimensional one (a.
plane); this would make the drawing of figures and the formulating of
the proof slightly easier, although everything essential will remain the
same in both, cases.

The laws governing collision of elastic spheres are well-known; already
Huygens set forth the main prineciples, though only for the uni-dimensional
problem of central impact. Let us assume that we know the two velocities.
OA and OB before the impact; at this occasion it will be convenient to.
plot them from the point of contact O of the spheres. Further, we know
the direction of thrust: the spheres being smooth, this is identical with
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the radii to the point of contact at the moment of the impact. The impact
will change 04 to OC, and OB to OD. For the determination of ¢ and D
we have: AC is equal to, and parallel with, BD (but of opposite direction),
and both are parallel with the direction of thrust; further, the quadrangle
ACBD is (not only a parallelogram, but also) a rectangle. That this is
the case can be proved as follows: — During the first period of the elastic
impact, 7. e. while the compression is increasing, the end of the one vector
will move from 4 to M, M being the middle point of AC; likewise, the
end of the other vector will move from B to N, N being the middle point
of BD. The relative velocity before the impact was AB; now it is MN.
But this first period will cease when the relative velocity is at right angles
to the direction of thrust; then the second period begins during which,
- the spheres move away from each other, and it lasts until the state of
contact is discontinued.

It should be remembered that no rotation is involved, according to

the presuppositions; either the spheres do not rotate at all, or else the
* rotations will remain unchanged even during the collision.

3. Concerning the Initial State.

We will suppose that the state of the molecules (4. ¢. their position and
velocity) at a certain time is as follows. The molecules are assumed to
be distributed quite accidentally in the plane (or, strictly speaking:
space) concerned, independent of each other, with the one exception that
no two molecules can occupy the same place partly or wholly. As mentioned
before, the velocity of an arbitrary molecule shall be represented by a
vector going out from the molecule. We can consider an infinitely small
area (strictly speaking, a volume) around a point situated at a distance »
from the molecule in some direction or other. We let the probability of a
velocity, the vector of which has its terminal point in this small area, be
proportional to e~** and to the magnitude of the area but independent
of the direction. Another, more exact way of expressing the same is to
say that the probability density in this portion of the plane and e~*"* are
in proportion. The probability density (also sometfimes called the point
probability) is defined as the limit value of the ratio between the proba-
bility corresponding to a certain area and the magnitude of the said area
as both converge towards zero. The precise “physical” significance of
the quantity k£ need not be considered here. — The state thus described
may be called the normal or Maxwellian state. Now the problem is to
. prove that this state is in ‘“‘statistical equilibrium”, . e. that conditions
as a whole will not cease to be as described above, in spite of the changes
in the separate molecules caused partly by the rectilinear motion, partly
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by the collisions. For, having proved this, we shall also have proved
Maxwell’s law.

4. The Proof.

To begin with, it is obvious that the usual rectilinear motion will not
discontinue the Maxwellian state. Let us now consider a collision which,
is to take place in the point O. The initial velocities are O4 = a and
OB = b, and the direction of thrust is given.

Now, we want to find the probability (more exactly, the probability
density) that a collision of this kind will occur in the near future; later,
we shall have to let both 4 and B traverse the entire plane. Pursuant
to the preceding, and in accordance with the theorem about multiplication
of probabilities, the expression for the sought-after probability must
contain, as factors, firstly the expression

e—lmZ . e—kb’: e~k (a® + b“);

secondly, the relative or reciprocal velocity AB = p; and finally, cosine
of the angle BAC between the said velocity and the direction of thrust;
{for, when the spheres are rather near to each other — which is the only
case we need consider — and moving towards each other, p - cos / BAC
will be the velocity with which the spheres are approaching each other.
Consequently, this quantity will express the permissible distance between
the spheres if we make it a condition that the collision take place within
a cerbain, narrow time limit.

We will now pass on to a consideration of the reversed collision, 3. e.
the direction of thrust is the same as before but the initial velocities are
OC and OD, and — as is at once obvious — the final velocities are OA
and OB; we can here use the same drawing as before. In order to prove
that the two probabilities are identical, we use the three equations:—

a? + b2 = ¢? + (2 (1)
AB = OD (2)
/ BAC = s CDB (3)

(2) and (3) are at once obvious. The equation, (1) is obtained by a simple
elementary-geometrical demonstration (an auxiliary line from O at right
angles to the two sides of the rectangle; the Pythagorean proposition);
it might also be obtained from the principle of energy, but that would
evidently be making a detour.

We will now divide the whole plane into small squares (or, if you like,
rectangles), the sides of which are partly parallel to, and partly at right
angles to the direction of thrust. If 4 is situated inside such a square

15
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and B inside another, then C and D will be situated inside a similar
pair of squares. We have now proved the existence of statistical equilib-
rium although only as far as the impacts hereto corresponding are
concerned. But, as we ecan now proceed to choose a new pair of squares
for 4 and B, and so on, and so forth, until there are no more possibilities,
we have herewith proved Maxwell’s theorem.



8. HOW TO REDUCE TO A MINIMUM THE MEAN
ERROR OF TABLES

First published in “The Napier Tercentenary Memorial Volwme”, 1915, p. 345.

In the years which have passed since the memorable invention of loga-
rithms, different systems have been devised for the arrangement and
calculation of tables of logarithms, chiefly for the purpose of combining
rapidity and convenience in use with a considerable degree of accuracy.
Some of these systems will be discussed in the following remarks.

1. Firstly, we will consider the simple type of tables, which are intended
for ordinary linear interpolation. Sometimes the first-differences are di-
recily given, and, as a rule, tables of proportional parts are provided,
while economy of space is effected by the double-entry arrangement
(already used by J. Newfon in the seventeenth century). For the sake of
brevity this type of tables will in the following be referred to as “Type A”.
They are, even nowadays, preferred by many caleulators, although
other types (see below) undoubtedly surpass them as to convenience
and rapidity. :

Now let us consider accuracy. We may here suppose that the higher
differences are unimportant, or the function nearly linear. It is here
essential to give, not the maximal error, nor the probability of some
special value of the error, but the mean-square of errors (which is the
square of the mean-error, according to the general significance of this
expression in the theory of probabilities). As unit of the error we will
use the last decimal unit of the table-values. If we consider only the values
directly printed, the mean-square of errors is known to be 1/12. If we sup-
pose the interpolations distributed evenly along the whole table-interval,
we find the mean-square of errors to be »

1/18 4 1/12 = 5/36, or 0-1388 ....

If, however, only the points dividing the interval into 10 equal parts are
considered, we find a slightly lower value,

403
3000’

or 013433 .......
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It is not necessary to give here the exact law for the distribution of
the errors, which is, furthermore, not very different from the ‘“normal”
law of errors; the reader interested in this question should consult De
accuratione qua possit quaniitas per tabulas determinari, by Carolus Aimilius
Mundt, Havnise, 1842.

2. We will now consider another well-known type, which will hereafter
be referred to as “Type B”. The ordinary double-entry table is here ac-
companied by a special auxiliary table, the separate horizontal lines of
which correspond to the horizontal lines of the main table. By means of
the values of the auxiliary table, which are simply 1, 2, 3 ... 9-tenths of
the mean-difference of the opposite part of the main-table, all the inter-
polations necessary are reduced to simple additions. This convenient
form of table seems to have been used not earlier than in the nineteenth
century, and the oldest tables, as far as I know, are the following two:
Fanfstellige Logarithmen, by A.M. Nell (1866), and Logarithms and Anti-
logarithms, issued by the Institute of Actuaries in 1877 (4 figures). The
arrangement used in some parts of T'ables trigonométriques décimales, by
Borda and Delambre (1801) is, however, essentially the same. Obviously
some modifications of this type of table are possible; but the arrangement
described here is the most natural, because the number 10 is the basis
of the system of numeration. '

Considering accuracy, we find the mean-square of the error to be

1/6 or 0.1666 ......

3. An increase of accuracy, without loss of convenience, has been ac-
complished by the appearance of Fircifret Logariimetabel, by N. E. Lom-
holt, 1897 (the first edition). This author’s object has been to do away
with the great errors (exceeding 1'05 units), and furthermore to diminish
the number of errors exceeding 0'5, as well as to diminish the “‘average
error”’. He has not, as sometimes stated (for example, in the Mathematical
Encyclopedia, both editions), reduced the average error to a minimum,
and he has not thought it necessary to use a definite method, excluding
entirely the personal element. Although, in my opinion at least, this is a
drawback, I willingly acknowledge not only the real progress made, but
also the general idea of improving the tables of Type B by means of new
values both in the main table and in the auxiliary table.

4. In a Danish paper, published in Nyt Tidsskrift for Matematik, 1910,
the present writer proposed to choose the 10 + 9 or 19 values of each
horizontal line in such a manner that the sum of the square of the 100
resulting errors will be reduced to a minimum. It is hardly necessary to
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say anything here in defence of this proposall); but I will shortly set forth
the method by which the 19 values may be found, using as an example
the calculation of a single line (61) of the 4-figure table of logarithms.

Let us, for the present at least, accept the values of a 7-figure table
as exact. As a starting-point we shall use a preliminary set of 19 values
taken from a table of Type B. From these we derive 100 preliminary
values of logarithms, and we write them down in form of a square.
The 100 values are subtracted from the 100 corresponding “exact’
values, and the 100 differences (or “errors”) are written down in a
similar manner. As some of the differences are negative, it is convenient
to use either the number 9 or, still better (in accordance with the late -
Professor T'. N. T'hiele’s suggestion), the letter » as representing a negative
unit prefixed to a number, the following decimal parts being positive.
By adding the vertical and the horizontal arrays we can obtain the sums
V and H. These sums we arrange according to magnitude in two parallel
columns, the former to the left, with the 10 terms decreasing from the
top downwards, the latter to the right, with the 10 terms increasing from
the top downwards. (Practically we always find that the difference be- .
tween two arbitrary terms of each column will be less than 10, numeri-
cally; if not, we use another preliminary set of values satisfying this con-
dition). We further extend the two columns downward by the repetition
of some of the terms at the top, having previously subtracted 10 from
each of the values V and added 10 to each of the values H.

If now we wish to alter the preliminary table in order to obtain the
final table, we may represent the resulting changes in the 100 values of
logarithms by following a certain number (m) of the vertical arrays and
a certain number (n) of the horizontal arrays, adding 1 to the values of

1) In: Nyt Tidsskrifi for Matematik B, vol. 22, 1911, p. 10, Erlang states the following
reasons why the method of least squares should be used: “In practice, the errors contained
in any particular table do not manifest themselves immediately or one by one. The numbers
corresponding to the logarithms to be looked up in the table — usually the results of meas-
urements — contain errors already; several logarithms must be added to, or subtracted
from, other logarithms in order to find the logarithm of the number that is to be looked
up in the table of antilogarithms. The detrimental effect of the resultant error is some
function of the magnitude of the error. This function cannot, as a rule, be determined;
but then, this is fortunately not necessary. The probability that the resultant error exceeds
a certain quantity @ depends only on the ratio of  to the resultant mean error and de-
creases as the latter decreases; but this resultant mean error can be expressed in a well-
known and very simple manner by the mean errors corresponding to the different sources
of errors. These mean errors should therefore be minimum. It is assumed in the above that
the resultant errors satisfy the typical, or exponential, law of errors; that this is actually
the case can be proved, however, even without knowledge of the particular laws of errors
applying to the different error sources in question if only the number of these sources
is fairly great.”
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Log 6100 ... 6199.

(—)1
1
2
(—)3
(—)4
4
5

(—)6

(+) (+)

A K.

Erlang:

7853 7860 7868 7875 7882 7889 7896 7903 7910 7917

4 1 9 6 3 0 7 4 1 8
4 1 9 6 3 0 7 4 1 8
5 2 0 7 4 1 8 5 2 9
6 3 1 8 5 2 9 6 3 0
7 4 2 9 6 3 ) 7 4 1
7 4 2 9 6 3 0 7 4 1
8 5 3 0 7 4 1 8 5 2
9 6 4 1 8 5 2 9 6 3
9 6 4 1 8 5 2 9 6 3
298 412 w514 »605 684 751 »807 852 1885 906 | 8714
010 123 224 »313 w391 »457 w512 w555 587 4608 | »5780 (4-)
722 833 1933 021 098 163 217 259 290 300 | 2845
434 544 643 »730 805 869 1922 1963 992 011 | 9913
145 254 v352 w438 »512 575 626 v666 695 712 | 6975 (+)
v857 1965 061 »146 1219 281 »331 ¥370 397 1413 | 4040 (+)
568 675 »770 »854 4926 4986 035 073 099 114 | 1100
279 385 1479 561 632 4692 739 776 . »801 1815 | 18159
»990 095 2188 269 339 397 w444 479 503 w516 | »5220 ()
701 805 896 w976 045 102 148 182 205 216 | 2276
3004 4091 »5060 »5913 »6651 »7273 »7781 18175 »8454 8620
(—) (=)
P v H q
v5 5
4091 »4040
7-095 26 4
»82:015 3004 »5220
] v'7 3
25-080 — 22 = 3-080 vgﬁzo\ 25780
v8 - 2
8454 \v6975
v9 1
»8175 »8159
0 —— 0
v7’781\ 8714
2:344 1 ~ 9
»78:801 v1273 \v9913
, 2 »8
28-543 — 25 — 8543 vﬁﬁﬁl\ 1100
3 — 7
¥5913 2276
4 v6
»5060 2845
5 vd
»4091 4040
97-398 6 vd
»79-901 »3004 5220
v3
17.497 — 19 = »8.497 5780
v2
6975
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the former and subtracting 1 from the values of the latter. In the cor-
responding arrays of the set of 100 errors corresponding changes will
take place, subtractions in the vertical and additions in the horizontal
arrays. The resulting improvement (the diminution of the sum of the
squares of errors) we can easily find by the formula:

I=2[V]—2[H]—10m—10%n + 2 mn,

[V] being the sum of the m quantities V, and [H] the sum of the n quantities
H. It is now at once obvious that in order to find these quantities in the
columns, we must proceed from the top of each column downwards to a
certain point, without skipping over any terms. Thus the only problem
left is to find the points where we are to stop, or, in other words, the
numbers m and n. But if we are to stop between V,, and Vm 11, and be-
tween H, and H,_,, the following conditions —

Vo >6—n>V,
H,<m—-56<H,,

— must be satisfied, as, otherwise, it would be better to take one sbtep
more or less, down the right or the left column. If we use the numbers

p=m—29a
g =4—mn

instead of m and n for the numeration of the successive intervals of the
columns H and V (see example), the two condltlons and also the ex-.
pression of I take the simple forms:

Vm > q > Vm+1
Hn < P < Hn+1

1/2 = [V] —[H] — (pg + 25).

It is now easy to find out the only pairs of values of p and ¢ compatible
with the two conditions (giving what may be called the relative maxima
of I). The result may be marked by limiting lines, as shown in the example.
For the final choice we must, by means of the formula, calculate the
corresponding values of I, ordinarily very few in number, taking the
values pg + 25 from a small table with two entries. The greatest value of
I/2 is chosen. The signs () and (—) indicate the resulting deviations
from the preliminary table.

It happens in a few cases that the number of decimal places (here 7)
used in the calculation turns out to be insufficient, but it is easy to give
a rule covering these cases.
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If this sort of calculation is to be undertaken on a large scale it is best
to try to get rid of part of the work, for example, by finding the sum of
10 function-values with equidistant arguments, without actually under-
taking the addition. For special functions, such as antilogarithms, the
way to proceed is obvious. Furthermore, the function considered in most
- cases is so nearly linear that we can find the mean of the 10 values from
the value corresponding to the mean-argument, applying, if necessary,
a small and easily determinable correction.

A set of 4-figure tables?) of the type described, has been ealcula,ted by
H. C. Nybolle, Mathematical Assistant at the Danish Statistical Depart-
ment, and myself. Another collection also containing 5-figure tables is at
present being elaborated.

I would only like to mention that similar principles might possibly
find application for the construction of tables of some simple and practi-
cally important functions of complex variables.

5. Concerning the mean-square of errors in tables of Type By, I have
tried unsuccessfully to find the exact value as in the cases A and B (see
above), especially for the purpose of finding the difference in this respect
between B and B,;. The solution of this problem is theoretically possible,
under the same supposition as to the nature of the function as above,
and the integrations necessary are very simple; but the number of cases
to be considered is very great. Some indications may, however, be had
from the experiences available; thus we find, that the improvement I
(for a set of 100 values) is, on the average, about 2 or 3 units; sometimes,
although seldom, it will be as great as 50 (about), sometimes 0. We might
also consider the case in which the second differences of the function are
considerable (although one can, of course, get rid of this case by altering
the interval). In this case the mean-square of errors produced by the
aforesaid cause will obviously be about four times greater for Type B
than for Type B;.

It seems probable that Types B or B will be much used in the future
for the construction of tables of different functions, and if stress is laid
on the greatest accuracy compatible with the arrangement, space, and
number of figures chosen, Type B, should be preferred.

1) A. K. Erlang, Fircifrede Logaritmetavler, G. E. C. Gad, Kebenhavn. (1910-11), three
editions, A, B, C, the last being the most complete.



9. AN ELEMENTARY TREATISE ON THE MAIN POINTS
OF THE THEORY OF TELEPHONE CABLES

First published in ‘Elektroteknikeren”, Vol. 7, 1911, p. 139,

It is undoubtedly a matter of common knowledge that the progress
experienced of late years with regard to long distance telephony is chiefly
attributable to the introduction of new types of cable with artificially
increased self-inductance, and that the difficulties deriving from the
considerable capacitance between the conductors of paper core or gutta-
percha cables have thereby been overcome, practically. speaking. First
and foremost, this important development is based on numerous theo-
retical investigations conducted, for instance, by Heaviside and Lord
Kelvin in England, Pupin and later Kenelly in America, Poincaré in
France, and Breisig in Germany. In Denmark, Prof. Absalon Larsen
has — among others — taken part in this work. Among those who took
the lead with respect to the construction of the new cables should be
mentioned Pupin and, of the Danes, especially J. L. W. V. Jensen,
Chief Engineer in the Copenhagen Telephone Company, and the late
C. E. Krarup, department manager in the Danish State Telegraph Serv-
ice. While the foreign literature of this subject is already very com-
prehensive, the Danish public has, presumably, so far only had oppor-
tunity to read a few articles which appeared in periodicals such as
“Ingenigren” (1903, 1911), “Fysisk Tidsskrift” (1902, 1904), and “Elek-
troteknikeren’ (1909, 1911); the authors are Krarup, and the engi-
neers Walsge and V. Clausen. The articles contain, among other things,
descriptions of constructions, results of speech tests, and calculations for
the different types of cables; but they do not afford much guidance for
anybody desirous of acquainting himself with the underlying theory,
and only a limited number of people have, so far, heard P. O. Pedersen’s.
exposition of the subject in his lectures, of course. Under the circumstan-
ces the following dissertation, which originally was prepared as a part of
the investigations of cable problems undertaken by the Telephone Com-
pany of Copenhagen, may perhaps be of some use as a basis for further
study; an expert will hardly find much in it, as far as new results are
concerned, but rather something in the line of simplified proofs and cal-
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culations. Many of the problems discussed are of consequence, as it
happens, also for other electrotechnical domains than just telephony,
for instance the conveyance of a. ¢. power electricity over long distances.

2. Mathemaiical Basis (Vectors, Complex Numberé).

In the following we shall be dealing exclusively with sinusoidal alter-
nating currents and voltages, 7. e. such alternating quantities, the varia-
tions of which can be represented by the projection of a straight line
segment corresponding in length to the maximum value of the current
(or voltage), and rotating with even velocity about one end-point O,
on a fixed, straight line, the z-axis, going through the point O. The di-
rection of rotation is supposed to be anti-clockwise. The frequency, or
number of cycles per second, multiplied by 2 = is called w. If we are dealing
with several simultaneous currents, or voltages respectively, all of the
same frequency, we get — for each of these — a line segment issuing from
O; we draw these lines in positions corresponding to definite, but other-
wise arbitrarily chosen, points of time. The line segments are called
vectors. It may be convenient, in certain cases, to let a vector issue from
some other point than O, without altering its direction and length. Any
vector can be represented, for algebraical manipulation, by a complex
number or pair of numbers, in the form a -+ ¢b where ¢ denotes the pro-
jection on the z-axis, and b the projection on an y-axis normal to the
z-axis. Now, any two vectors, or the corresponding complex numbers,
can be added or multiplied, 7. e. a new vector is produced by geometrical
construction, or a new complex number is calculated, respectively, ac-
cording to the following rules (Caspar Wessel, 1797): —

I. Addition. — Rule of construction: Let the two given vectors be
represented by two adjacent sides of a parallelogram; the diagonal will
then represent the sought vector. — From this is easily derived the rule
of calculation:

(@ +ib) + (¢ +id) = (@ +¢) + 4 (b + d),

where addends and augends are obviously interchangeable.

II. Multiplication. — Rule of construction: The angle between the
x-axis and the sought vector must equal the sum of the angles between the
z-axis and the two given vectors; the length of the sought vector, as
measured in terms of the unit employed, must equal the product of the
lengths of the two given vectors. — Hence it follows that the factors are
interchangeable, and that the theorem

(@ +9)z =2z + g2
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holds good also for complex numbers, as is easily proved by means of two
similar triangles. — Now the rule of calculation can be derived:

(@ + ib) (¢ - id) = (a6 — bd) + i (ad - bo).

It shduld further be noticed that the rule of multiplication especially
implies that
(@ + ib)2 = a® —b% + i - 2ab;

we shall also need the following formula for extraction of square roots:

4k 2
Vo= /i)

where the terms on the right side are to be taken with like signs for A
positive, but with unlike signs for # negative, and where

g
9 2

k= +Vg* 4 b

the formula is easily proved by raising the right side to the second power.
The accuracy of the slide rule will not, as a rule, be sufficiently great
for practical calculations with complex numbers; logarithms should there-
fore be used, and preferably also a table of squares. (A few remarks of
mathematical nature will be postponed until they can be connected).

3. Physical Basis (Ohm’s Law for Alternating Currents).

It has been proved by experience that the different types of conductors
employed in practice for the purpose of carrying alternating current, all
have certain simple properties: when the voltage is sinusoidal and has
a certain frequency, the current will also be sinusaqidal and have the
same frequency, and vice versa; this is true, however, only when con-
ditions have become stationary. We shall therefore concern ourselves with
what happens under stationary conditions only. Ohm’s law, according to
which the voltage is equal to the product of current and resistance,
applies here, too, the resistance being a complex quantity just as voltage
and current are complex quantities; the multiplication is carried out in
accordance with the rule stated above. In other words, when different
a. c. voltages are applied to one and the same conductor, the ratio of the
maximum values of voltage and current and the phase difference will
always be the same. It is often preferred to manipulate with conduct-
ance instead of resistance; conductance being the reciprocal of resistance,
it is necessary to adapt Ohm’s law accordingly. Starting from the usual
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definitions of self-induction and capacitance, it is easy to show that an
inductance of L henry represents a resistance

L,
and that a capacitor with a capacitance of C -a:ad has a conductance
twC.

For the sake of brevity, only the first of the two propositions shall be
proved here; the second can be proved in a similar manner.

Y

icw

N\
o7\ cwdt

—ilcw

Fig. 1.

In fig. 1, the vector ¢ represents the current; in an infinitely smalk
space of time df during the rotation of the vector, its end-point will cover
a distance the actual length of which is cwdt, but nevertheless must be
written '

V 1cwdt,

because the route is normal to ¢. As it will appear by projection on the
x-axis, the vector ‘cwdt will always during the rotation represent the
increment of the current for the time df; the vector icw will, accordingly,
represent the velocity of this increment. The self-induced e.m.f. is.
represented by the vector —iLcw, that is the inductance acts as a re-
gistance iLw.
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The reader can now, by means of what was said above respecting
calculations with complex numbers, ascertain that problems concerning
conductors connected in parallel or in series can be treated as d. ¢. problems.

When, in the following, the words resistance or conductance are used,
it must be remembered that they always refer to an alternating current
of this or that frequency; similarly, when such quantities are designated
by ordinary small letters, the latter nevertheless stand for complex
numbers.

4. The Infinitely Long Homogeneous Cable (Near-End Resistance).

We shall now proceed to investigate an infinitely long cable, parfly
because the question of long distance telephony is particularly important,
and partly because we shall obtain certain results which will be useful
later.

First, we will consider a circuit (see fig. 2) consisting of two conductors,
with the resistance r; and a leakance s; repeated alternately to infinity.

3] Ty ry ry r

S $ $y 5 Sy

Fig. 2.

It is unimportant in what proportion the resistances r, are actually
divided between the two wires; it is therefore unnecessary to consider
the case of a single wire circuit separately. We will find the total or loop
resistance z,, measured at the near-end of the two-wire circuit. We get:

1
7 — =2z
S +1 7 (1)
or, 1
21 (748 1 7
1(11+ )+ 1=Z1, (2)
2,81+ 1

from which z; can be found easily. The special case of »; and s; being
infinitely small permits omission of r,s,, which gives

Z[i=\) — (3)

81
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Now this can be applied to an infinitely long homogeneous cable having
the resistance r, and the leakance s per unit length. Then, imagining

1
that the unit length has been divided into m portions, we put — -
' m

1
instead of r;, and — - ¢ instead of s,. Taking m = oo we find
m
r
z2= l/— (4)
s

5. The Infinitely Long Homogeneous Cable (T'ransmission).

- We have a circuit consisting of a resistance r, and a leakance s;; at
the receiving end is added a resistance z, (fig. 3) '

n

Sy Zy

TFig. 3.

Both current and voltage will be attenuated as a result of being con-
veyed by this circuit, the former by passing s, and the latter by passing
ry. The ratio of the current values on the right and left side of s, is

1 1
— (31+ —)
2 2

The ratio of the voltage values on the right and left side of r; is

\

1

el 1
1 1+

8§14+ — s+ 1.
z1 z—
1

The two ratios are equal, since the last parenthesis is equal to 2, according
to (1). This was to be expected as the ratio of voltage to current must be
the same on the left and right side of 7, and s,.
In the special case of 7, and s; being infinitely small, the found ex-
pressions will read
1

I: [/rlsl.
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We will now consider a unit length of the previously mentioned, infinitely
long homogeneous cable, and we divide this unit length into m portions.
In order to find the ratio of the currents transmitted and received by
each unit length, we must seek the limit, as m tends to infinity, of

1 m
)
X
Transforming V/rs into B -+ ia where B and a are real numbers, we have
1 m 1 '\ m 1 m
R 1 1.
14 -—Vrs 14+-—8 14+ —ia
m m m

We find that the limit of the first factor is evidently
b,

’ '

T
e being the limiting value of <1 + —] as x, which is real, approaches
x

infinity ; e has the value 2:718 to three places of decimals. — As to the

1
second factor can be mentioned that the infinitely small vector — ta
: m

is normal to the vector 1 which, therefore, neither increases nor diminishes
by the addition; it only turns through a certain angle which, measured

1
by the length of the arc it subtends in a circle with radius 1, is — a.
m

The sought limit, then, is a vector of the length 1 turned at an angle
— a to the z-axis. (The proof outlined here can easily be given an exact

180
form). Expressed in, degrees, the angle is —a+ — . We have now deter-
m T

mined the attenuation and phase displacement of the current (and
voltage) for the unit length of cable. It is often pleferred to let the
factor =7, where

y =B +ia=1rs, (5)

denote both these changes together; the expression ef* designates a
vector of the length ef forming an angle o with the z-axis, and it can be
shown that the usual rules for calculations with numbers raised to
real powers are valid also in the case of complex powers.

It should be noticed that the ratio of attenuation of energy must be
¢~28, since current and voltage both have the attenuation ratio .
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It we consider a cable of the length I instead of 1, we get the values
Bl, al, yl instead of B, a, y; yI is called the transmission coefficient. .
The numerical calculation of f and « is not particularly difficult; as

r =R + ioL, ‘ - (8)
s =28 4 iw0, ' (7)

where R, L, C, S are real numbers, we obtain:
2 2 =|/(w?L? + R?) («?C* 4 8?) — (w*CL — SR) - (8)
2 o — J(@L® + B (@C* |- &%) + (w*0L — SE) (9)

Tt is generally assumed that L, R, 0, S retain the same values for all
frequencies, but that is not strictly correct.

6. Continuously-Loaded Cables.

The method of spinning iron wire over the conductors in a cable
was first put to practical use by Krarup (1902), since when it has found
rather extensive employment. A few years before, J. L. W. V. Jensen
had made a suggestion of the same nature and experimented with a very
similar type of cable. The idea of improving the cables by increasing their

Y

Fig. 4.

self-induction can be traced, in a more vague form, to a still earlier date.
The effect of the iron wire upon the conductor is chiefly that of increasing
the inductance; we shall here assume that this does not involve a si-
multaneous change of the values of the other constants. We want to
find the optimum value of L as specified by the condition that an infinitely
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small variation of L, 4. e. an infinitely small variation dr of  in the direction

of the y-axis, must cause an infinitely small variation dy of v, also in
the direction of the y-axis. We have:

Y=g g (10)

2 ydy = s dr; (11)

accordingly, y and s must have the same direction, and again, » and s

must have the same direction. The problem is solved. For various reasons,
however, it is difficult to get so much inductance in practice.

7. Kennelly’s Two Diagrams. — The Principal Constants.

Fig. 5 shows the first Kennellian diagram, the 7-network, where a is

a c

Fig. 5.

a resistance, b a leakance, and ¢ a resistance. It has the following 3 principal
properties when an additional arbitrary resistance z is connected in series
with ¢:

The ratio of transmitted to received current is

1

—b-— .
1 El
?"f“f?—l“x

The ratio of transmitted to received voltage is

€T

z (ab 4 1) —|—‘abc—|—a—[—c;

The total resistance is

z (@b +1) +abc +a +¢
xb 4+ be + 1 )

These properties — of which any two lead to the third — and only

16
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these are significant for the performance of this connexion as a cable.
We will now introduce 4 constants p, g, w, and v, being defined as follows:

p=uab-+41
= ab c
abc + a + (12).
“w=~0
v=>0bc +1

Of these, p and v are abstract numbers, ¢ is a resistance value, and % is
a conductance value. As it will appear from the following, it is justifiable
to call them ‘“‘the principal constants’.

' The 4 constants count, as a matter of fact, for 3 only, because we have

pv—ug =1 | (13)

It is easy to see how a, b, and c can be expressed in terms of the principal
constants; in practice, of course, the real parts of a, b, ¢ must be positive;
this is nob necessary, on the other hand, when the above notations are
used exclusively as a means of help in the calculations. We can now
write new and simple expressions for the current ratio, the voltage
ratio, and the total resistance, respectively, viz.:

1

v+ ux’

X
px +q°

px + ¢
uw+v'

The relative positions of the two ends of the two-wire circuit can be
reversed by interchanging p and v. '

f

Fig. 6.

The second Kennellian diagram, the =-network, is shown in fig. 6 where
d is a leakance, f is a resistance, and g is a leakance.



An Elementary Treatise on the Main Points of the Theory of Telephone Cables. 24.3

When a conductance ¥ is placed parallel to g, the current ratio, volﬁage
ratio, and resulta.nt conductance are, respectively, «
y(df +1)+dfg+d+g’

1
R
1
7+9+'3/

y(df +1 +ﬂg+d+g
f¢m+1

bl

. By infroduecing 4 “prin(npa»l '.fconstantS' as defined by

p=1fg+1
=1 (14)
M—W¢+d+g
S d]‘ ~+ 1.
~ these expressions can be reduced. to
v
yv -+ u
1
P+ qy
Yo + u
yq +p
1
In the case of y = —, however, we find by comparison that the first two
x

expressions are identical with the corresponding expressions for the 7'-
network (see above), whereas the third (the ‘conductance) is the recip-
. rocal of the resistance as expressed above, assuming all a,long that p, ¢,
u, and v are the same in both, cases. We have now shown that a =-network
can always replace a 7T-network, and wice versa, if only the principal
constants are the same.

We will now consider a more complicated diagram consisting of any
number of resistances and leakances (fig. 7). It is obvious without any
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calculations that this new diagram can be converted, step by step,
into a T-network or a w-network by substituting, successively, =-net-
works for such portions of it as can be regarded as 7-networks, or
vice verse. If the total number of resistances and leakances is 4 or 5,

n ) 1] [} 11 1] rq

Fig. 1.

only 1 substitution is necessary; 2 substitutions are required if the total
is 6 or 7, and so on. Thus, when resistance and leakance are distributed
arbitrarily all along a length of cable, the cable can be described precisely
by means of 4 principal constants.

- 8. The Infinitely Long Periodic Cable.

For an, infinitely long cable consisting of an infinitely great number of
cable segments each having the constants p, q, u, v, the total resistance x
is given by the equation,

_peta (15)
uxr -+ v

again, the current or voltage ratio for each segment is given by the equation,

1
e = (16)
v+ ux
We obtain from these equations,
ur? 4 (v —p)rx—q =20 (17)
and, because of (13),
e e =p 4o (18)

In the special case of the cable segments being symmetrical, we have

p = v; hence,
q
4 (19)

er + e =2p, |
—2Vqu | | (20)
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9. The Finite Homogeneous Cable.

The last 2 results combined with the results from sections 4 and 5
enable us to determine the principal constants of the finite, homogeneous
cable. We have, ‘

= (21)
u 8
¢l fedmli—2p (or, 47V = 2 )/ qu); (22)
a,ccoi'djngly, ‘
: 1 B
p= v:;(e""s'l+e*l/’s'l) (23)
q _:_l_ L/"ﬁ(el/g'l— e—[/r?-l) (24)
2 8§
1 /? Vrs -1 —Vrs -1
u = 5 l " (e —e ) - (25)

10. The Connexion of Two (or more) Cables in Series.

The principal constants P, @, U, V of the composite cable can be ex-
pressed, in terms of the principal constants p,, ¢, uq, v; and p,, ¢y, u,, v,
of the two parts, by the following simple equations:

P = pips + q1us
Q = pigs + q1vs
U = uips + v1%,
V =1wuqs + vy,

(26)

Taking the current ratio first, in order to prove (26), we find that we
must have ,
1 1 1
V+ sz— vy + Uiy vy + ugw,

where x, is quite arbitrary, and

_ Ps%s + G2

1 .
Uy + Vg

Hence we obtain the expressions for U and V. Taking the voltage ratio
next, we get the expressions for P and @.
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From here it is easy to proceed to a consideration of a cable composed
of more than two cable segments, which composite cable we may char-
acterize as possessing propertles corresponding to the ° ‘product” of its
component segments, only the “factors” are not mutually interchange-
able here; during the actual calculations, however, you are at liberty to
form the product of nos. 1 and 2 first, or of nos. 2 and 3, and so on.

The applicability of the found results is rather widespread. They may
“be used in cases where telephone calls have to pass two or more channels
of different nature connected together; they also apply to cases where
capacitors, inductance coils, &c., are connected in series with, or across
the circuits, at the exchanges or at the subscribers. They apply, further,
to the different types of transformers (toroidal transformers, induction
coils, repeating coils, &c.); the ratios are here particularly simple, be-
cause the quantity « is purely imaginary. It should be noticed, however,
that in the case of a transformer we are supposed to be dealing with a
connexion of two eircuits (primary and secondary) having lines of magnetic
force in common, wholly or partly, but not otherwise influencing each
other; and transformers of the types employed in practice will hardly
fulfil such conditions completely.

11. Pupm Cables (Short Coil-Spacing).

The self-inductance of a cable can be. 1ncreased by 1nsertmg identical
coil inductances, or loading coils, in the cable at uniform intervals along
the routes, as devised by Pupin in 1900.

We will assume for the present that the distance is so short and the
amount of self-inductance so small that the inductance added can be
regarded as evenly distributed. If we leave out of account the ohmic
resistance added at the same time, we have the same conditions as in
section 6. We will further assume, however, that the increment added to
the original value of 7 consists of a real component and a purely imaginary
component as well, the ratio of which is constant and known. We have,

'y2 =1r-Ss,
2ydy = s - dr;
accordingly, at the optimum point,
y? = s%- dr?
rs A ot dr?
T F s (Zrz

where the symbol =+ inea,ns “ha.s the same dneetlon as’’
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The angle between s and r, then, must be twice the angle between the
x-axis and dr. Hence follows a construction (a generalization of that in
section 6) by means of which it is easy to decide exactly how much in-
ductance should be added. ' )

Y

12. Pupin Cables In General.

We will now proceed to consider the case of an arbitrary, predeter-
mined coil-spacing and investigate the effect of the Pupin coils inserted.
Let us take a symmetric cable segment, having the constants

P1s 91, Uy, Q{l:

togéfhér with one half of the precéding Pupin coil and one half of the
succeeding Pupin coil, each half having the constants

1,950, 1.
Now let the constants of the described circuit be called
Py q, U, V3 |
i;hen, according to (26), we have

P =0 =Py + Uz ‘
g =¢q; + 2 piga + %195° J (27)

U = U,
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and, according to section 8,

et et =ptu : (28)
(¢f —e 2 =4qu, (29)

where ¢ denotes the transmission coefficient.
From (27) and (28) follows that

3 (6'# + e“ﬁ) = P1 + %195 (30)

This formula is of great importance because it serves to calculate the
attenuation for any frequency when the constants of the cable and coils,
and the coil-spacing are given. Tables of the values of

3 +e ") and }(°—e7)

for arbitrary values of x are required for the practical calculation of p,,
4, and. ¢; such tables as C. Burrau: Tafeln der Funktionen Cosinus und
Sinus, or G. F. Becker and C. E. van Orstrand: Hyperbolic Functions, will
be useful for this purpose, although they only give the values for real
or purely imaginary values of z, but it is not difficult to form the values
for arbitrary values of z by means of the tables. It is somewhat more
difficult to find the quantity

B +ia=4¢
from formula (30) which can be written in the form,
1+ e ?) =£+in (31)

where B, a, £, 7 denote real numbers. It is undoubtedly best to use the
two formulae

Ty + 1

3(ef 4 e By = 5 and (32)
pe oy =20 (33)
where -
ro=V(+1)* + 92 (34)
= VE— T @

the proof of which I shall omit for the sake of brevity.
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13. The Determination of the Coefficient of Self-Induction for Pupin Coils.

The inductance added by ingerting Pupin coils in a cable is never pure;
the vector corresponding to the resistance g, forms a slightly acute angle
with, the z-axis, which angle in practice can be determined in advance.
The value of ¢,, on the other hand, is optional, and we will seek the
optimum value, supposing the cable constants and coil-spacing to be
given. When ¢, varies, ¢ will also vary, and we have according to (30)
that

(e — e~ %) dp = 2 udyg,, . (36)
and. 8o, because of (29),
4 qu - (d4)* = 4 u? (dg,), (37)
7 (d4)* = u (dgo)*. (38)
For the optimum point where d¢ is parallel to the y-axis, we have
q F u (dgo)*

By means of the formulae (27) this condition can be converted into

71+ 2 P1qs + u195% F u, (dg,)?

We will presuppose that the direction of ¢, is given; accordingly,

dqs + qs.
The condition is then

91 -+ 2 Pige F g (dg5)? F u,g,%

It is now easy to determine the sought value of ¢, by construction or
calculation.

In the special case of g, being parallel to the y-axis, which simplifies
our problem, we have for the optimum point

q F u.

The assumption that the cable segment is infinitely short will, of
course, bring us back to the results from sections 6 and 11.

14. The Choice of Receiving Instruments.

When the type of cable to be used has been decided updn, the question
of adapting the constants of the telephone instruments as well as possible
to those of the cable suggests itself. Such instruments must be able to
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work both as transmitters and receivers at all times, which complicates
the problem. We shall here restrict ourselves to the consideration of a
transmitting instrument containing a microphone only, a receiving in-
strument containing a telephone receiver only, and a cable of such a
length that it may be regarded as infinite. Since the space available for the
coil windings of the telephone is limited, the resistance x of the receiver
will be proportional to the second power of the number of turns, and the
vector corresponding to x will have a given direction. ITn order to get a
maximum number of ampere-turns, the numerical value of the product
of the current and the square root of the resistance, viz.

1

uw—l—v

Y,

should be maximum; or the numerical value of

/x—i—l/s Vw .

(see section 9) should be minimum. Putting u instead of V%, we have for
the optimum point, then,

1 . r r
_(‘L,d_“}/i.i)d“_#_{_‘/l._l_’
2 s p , s p
1 o1
— 1/ == IR,
y ‘/8 ”_#4-‘/5 "
m~‘/’;'_x -+ l/—r—
S

xis consequentlydetermined by a circle where the end points of

l/l and — ‘/1

s s

are diametrically opposﬂ;e pomts the res&sta.nce of the receiver must

then be numerically equal to the resistance of the infinitely long cable.
In his lectures, P. O. Pedersen a few years ago stated the same result,

only proved in a different manner. An investigation oorrespondmg to the

above could be carried out with similar means of help, even though the
‘presuppositions are someéwhat less simple than in the above.

or, as u F du,
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Y

Fig. 9.

15. Methods of Measuring. : ‘

According to the foregoing, an investigation of a length of cable will
rather be directed towards the determination of the 4 constants p, q, u, v;
in consequer_lcé of the equation

pw—ug =1

their number is actually reduced to 3, and in most cases it is even reduced
to 2, on account of the symmetry. Apart from an alternating-current
generator producing a current of the desired frequency, a suitable meas-
uring instrument is required for the purpose mentioned, for instance a
Wheatstone bridge with a telephone; it must comprise 3 known resistances,
two of these being non-inductive and the third having a suitable, known
inductance or capacitance. Balance can be obtained by ad]ustmg the
values of two of these, an unknown resistance being inserted as the fourth
side of the quadrangle; the sought resistance is then easy to find. ‘Thus
it is possﬂole to measure the resistance ab either end of the cable, with
the opposite end first short-circuited, and then open-circuited; in this
manner the respective values of the ratios

are found, which is more than sufficient for the determination of p, ¢, u, v

(An alternative method consists in connecting a resistance of known

value across the opposite end of the cable during the measurements).
Professor A. Larsen’s “Complex Compensator” is just as convenient as
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the Wheatstone bridge, and its serviceability is more comprehensive. It
was the subject of a lecture in the Danish Electrotechnical Association;
the lecture has been printed in no. 25 of the journal of this association
(1910), for which reason it is unnecessary to describe it here. Neither does
the allotted space permit a description of another, somewhat simpler form
of construction which it might otherwise, perhaps, be interesting to compare
with Prof. Larsen’s original construction. For the purpose of our present
investigation, the compensator will accomplish the same as a Wheatstone
bridge; p and v can furthermore conveniently be determined by meas-
uring, partly, the potential difference at one end of the cable, and partly,
the potential difference existing simultaneously at the other end. A pair
of test wires may be used in the latter case, but their resistance need not
be known.

Finally may be mentioned a recently suggested method for deter-
mining the transmission level and total resistance of the infinitely long
cable by measuring an available cable segment. The method involves
the use of a variable capacitor. A resistance, estimated to be equal to the
resistance of the infinitely long cable, is added at one end. Control measure-
ments at both ends of the cable will give identical results if the estimate
- is correct; if not, the resistance added must be altered in accordance with
the results of the measurements, and so on. The final amount of resistance
added is equal to the sought resistance. Next, the magnitude and direction
of the quantity which in the above was given the symbol e?, can be found
by measuring the potential difference at both ends of the cable segment.
The compensator will undoubtedly be very suitable for this method.

16. Summary.

After a historical, mathematical and physical introduction (1, 2, 3) the
principal formulae respecting the infinitely long homogeneous cable are
deduced in a simple way (4, 5), the results being applied especially (6)
to cables with artificial, evenly distributed self-inductance. It is shown
(7) that any length of cable is characterized by 4, or actually 3, so-called
principal constants; the connexion of these with the constants mentioned
earlier is demonstrated (8, 9), and rules of calculation are given for the
connexion of cables in series (10). Next are mentioned the coil-loaded
Pupin cables (11, 12, 13) and the cooperation of the receiver with the
circuit (14), and finally the application of the theory to the methods of
measuring (15).



10. AN ELEMENTARY THEORETICAL STUDY
OF THE INDUCTION COIL IN A SUBSCRIBER’S
TELEPHONE APPARATUS

First published in “Elektroteknikeren’”’, Vol. 10, 1914, p. 169.

1. Introduction.

An ordinary telephone instrument of the Local Battery type contains,
in addition to a telephone receiver and a microphone with appurtenant
battery, a transformer (toroidal induction coil, or plain induction coil) the
primary winding of which, is part of the local or microphone circuit, while
the secondary is connected in series with the receiver and the external
conductor. Even if these items are taken for granted, the description of
the instrument would not be complete without mention of quite a lot of
quantities of mechanical, electrical, or magnetical nature. In practice, a
good many of these can be chosen at discretion, alone with a view to the
greatest possible efficiency of the instrument. The most important problem
in a theoretical investigation is therefore the determination of such values
of the constants as will give the best possible result; it should be remem-
bered, however, that in each particular case a certain latitude is permis-
sible, having no perceptible effects in practice, not even by systematic
speech tests.

2. Formulating the Problem; Denotations.

In order to find out which type of transformer is the best, we must
know, firstly, the resistance r; of the microphone, and secondly, the
characteristic impedance of the conductor, 7. ¢. the apparent impedance
of the infinitely long line, and the impedance of the receiver; or rather,
just the sum 7, of the latter two, which is supposed to be a simple resist-
ance. We assume that the two instruments under consideration are
absolutely identical, and connected by a long conductor. The resistance
variations of the microphone are supposed to be small; the radian fre-
quency is called w (= 2« - frequency). It is difficult — even after the
latest microphone investigations — to account for what actually happens
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when the resistance connected in series with a microphone is increased or
decreased (unless the battery voltage is changed simultaneously so that
the current remains constant); but we can evade this difficulty by sup-
posing that the resistance of the primary winding is insignificant as com- -
- pared to r,; the resistance of the secondary is, similarly, considered small
in proposition to 7,. It is also assumed that eddy-currents and hysteresis
are negligible quantities. The last mentioned conditions are easily satis-
fied in practice if the available space is not too restricted, especially if
it is possible to use thin core wires made of a good quality of iron. Now,
we want to determine the two coefficients of self-induction, {, and 7,, and
the coefficient of mutual induction, m; we will suppose that

l

|t
E

== M

‘1. ¢. there is no leakage flux.

" 3. Fundamental Equations.

Under the above suppositions we can find the resultant impedance of
the transformer by disconnecting the microphone and.measuring the
primary, or by disconnecting the receiver and conductor and measuring
the secondary. We get, respectively,

By=—12— @)

By=—t (3)

using the mathematical operator 4 in the now familiar manner. Further-
more we can find the alternating current values in the following circuits:
the microphone circuit of the transmitting instrument; the telephone
receiver of the latter, or the near end of the conductor; the far end of the
conductor, or the telephone receiver of the receiving instrument; the
microphone circuit of the receiving instrument. The last of these alternat-
ing current values is of no importance at all, however; the first three will
be, respectively, :
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/o,
Ed T_l_lz

I, = it 4

0 — (4)

Corg il Fraly im

Edm

I, = g (5)
7, (rllz + 7yl : 2)
w
»
9 BdZe"'m (_+ I,
Tw
I, = > (6)
o, 1T
71 (7'1l2 + 7aly )
. : tw

It has been necessary to introduce some new denotations here, viz.

E = the battery e. m. f. or voltage ‘
d = half of the variation of the microphone resistance during speech
Z = the characteristic impedance of the conductor
z = the numerical value of Z
! = the length of the conductor
"~y = the propagation constant of the conductor = 8 + ia
B = the real number component of y.

. In the case of the present investigation, however, all these quantities
are constants, so that we may put '

2 Bdze P

81

=F )

Hence, considering especially I, (and only its numerical value, or am-
plitude, | I, [ as the pha.se is of no importance in this respect), we
obtain
m2( + 1, )
\ (JJ

iIZZ:kz Ty 2po2\2 - (8)
<(9’1l2 +ryly)? L 2)

7 2
21 1.2
no\ + 4
w
,7-12 m4 . 7‘12 722)2

+ 27, r,m? 4 ;
1 w

or, because I, 1, = m?,

L=k

72 0% +
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r.2
o
CR— @ (10)

r,2mé 127,22
r® L+ +2rrym? + >

or, by substituting L for /.,

1.

w

4. First Condition To Be Satisfied.

If we, temporarily, let L be a constant, we must now — according to
(10) — aim at securing a minimum value of the quantity

2 1 7,2
(7‘22L—l— 2) +2¢17'2m—|——117m3;
we have, then, ‘

o2
37,

742 7'2 1 .
m? 4 277y — (12 L -+ — =0, (11)
L m2
or, by substituting M for m?,
3 2 2
21 M2 4 270, M — (r22L+rl :2):0 (12)

~—~—*—1+ t+ ‘ (13)
37,

The value thus found will always be real and positive.

5. Second Condition To Be Satisfied.

M ‘
Now let us regard 5 —Tasa constant. We have, from (8):

2
(%)
ilz ’2 = 2 2 ,. 2\2 (14)
e
2
mL(’l2 +L)
|I,]2 =k ® (15)
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The maximum value of this is obtained for

?.iz
L = - 1
(ot ) ) (16a)
w (22T o)

752

provided that r,& > r, (//2 — 1); if, on the other hand, 7 < 7Ty (VE;— 1),
it is necessary that
L = oo, (16b)

since L cannot be negative.

6. Combined Result.

It now remains to combine the results obtained in the two preceding
sections. No serviceable result can be derived from (13) and (16a) taken
together. (13) together with (16b) give the following resiilt,

L = o0 ' (17)
T3

= 18

vy (18)

Here, the ratio n of the number of turns in the primary and secondary
windings can be introduced ; this ratio being the square root of x, we have

w2 | a9

"The corresponding maximum value of ’I 2 i will be

‘ 3V3 Edze B!
1 12 ‘max T T > (20)

8717y l/7'1""2

or

| 33 1

\L I2 ‘ma,x = k- (21)
16 7 V7'1 T2
The corresponding values of R, and R, will be

R, =3, (22)

B, =5, (23)
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7. Comparison of Different Transformers.

It is often useful to have an algebraic expression for the serviceableness
of different transformers. Then, a comparison of each individual trans-
former to the best possible one suggests itself naturally; the ratio of the
two values of | I, | concerned being denoted by f, we arrive at the for-

mula,
V < 752 . 722> Ty
z 2 )2
16 2w 12/ 7y Lo
f=—=" 5 —, (24)
313 <x +@> LT
74 142 o?
or » .
L/( 752 + 7’22> 7a
n e _
16 » l20?  7r? 8 (25)

B 3)/3 ' <'n2 _{_’?)2_*_ ro?

71

8. Example.

Putting ; = 20; r, = 2000; w = 5000, we get a rather typical example,
viZ. _ '
100
n=| —=>58 ‘ (26)
3 N
and furthermore, by means of (25), the following “double entry” table of

f as a function of I; and n:

h |
\ +000 001 002 ‘003 004 | 005 | -006 -007 -008 ~-009 | -010 | oo
n

5 -000 -362  -619 -768 '850 896 | -923 -939 -950. ‘958 | -963 | ‘989

*000 -427 -706  -849 -917 | -950 | -968 ‘978 984 -988 | -990 | 999
-000 -488  -775 -898 -947 | ‘965 | -972 ‘975 ‘976 -976 | *976 | ‘971
000 544 -824 -919 -944 | 948 | ‘945 941 -937 -934 | ‘931 | ‘916
+000 -593 852 914 -917 | 907 | ‘895 886 ‘879 873 | ‘869 | -846

© 0w >

10 -000 ‘635 -861 888 871 | -850 | -833 -820 810 803 | ‘797 | ‘770

11 +000 ‘669 853 ‘848 -814 | ‘786 | ‘764 ‘749 738 ~-730 | *723 | 694
12 -000 694 -830 ‘797 752 | 718 | -694 678 -666 ~-657 | "651 | 621
13 +000 “710  -797 -740 688 | *651 | '627 ‘610 ‘598 -589 | ‘583 | *553
14 -000 718 756 682 -625 | *587 | 563 547 535 527 | *520 | -492

15 <000 717 -709  -624 565 | 528 | ‘504 489 478 470 | +464 | 437
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Such a table can be ufilized in various ways. Thus, values taken along
vertical or horizontal lines may be used for plotting curves; or I, and »
may be regarded as right-angled coordinates for points in a plane, and so
curves can be plotted in this plane corresponding to f = 090, 0'80, &c.
In practice, all transformers belonging on the proper side of the curve
for f = 0-90 will probably not be much inferior to the theoretically cor-
rect one. — The reasons why the curves mentioned are not shown here,
are that they are so easy to plot, and that the table chiefly gives the same
information.

9. Articulation.

Apart from o = 5000, other somewhat smaller and larger values must
be considered, if not only a high power level, but also high intelligibility
in the transmission of speech is desired. For this purpose, however, no
special calculation is necessary; as formula (25) shOWS, a cha.nge of w
can always be regarded as equivalent to a change of 7,, ‘and the desired
values of f as corresponding to different values of w are consequently to
be found in a horizontal line of the above mentioned table (or from the
correspondingly derived curve). Here, only the articulation reduction due
to the transformer has been taken into consideration (and r, is accordingly
regarded as being constant for the different frequencies); as it happens,
this reduction is generally of no importance as compared to that due to
the variation of the 8 of the cables in particular, and perhaps — to some
extent — to the variation of the d of the microphone.

10. Resistance of Transmitter and Recesver.

The formula (20) gives, at least, some information as to the question of
what resistance values should be chosen for the microphone and the tele-
phone receiver, although it is an indication only — not a directly ap-
plicable rule — since neither of these is so simple a device as the trans-
former. Let the best telephone be the one that receives the most energy;
we shall then ﬁnd that the resistance of the telephone should be about
%7y, or about }z Regarding the microphone we may work on the
hypothesis that d and r, are proportionals; there seems to be reason, also,
for assuming that the battery voltage and the square root of r, should
be proportionals, e. g. with a view to the necessary cooling of the micro-
phone. Under these suppositions, all values of r; may prove to be equally
good.
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11. Inductive Shunt.

It seems natural to ask whether some other device might not be just
as useful, or even more so, than a transformer; it would rather have to
be a low-resistance shunt with a high coefficient of self-induction. The
transformer which, according to the above, was selected as the best
would then, for r, = 3 r,, be equivalent to the shunt. In practice, how-
ever, we always have 7, = 3 r;, and the transformer is therefore to be
preferred. o '

12. Conclusion..

We have in the foregoing been dealing with the Local Battery instru-
ment, under presuppositions chosen so as to make the calculations fairly
simple, but without departing essentially from what is usual or possible
in practice. The supposition that the impedance 7, is a simple resistance
may, of course, be abandoned, and an arbitrary impedance taken instead;
but there is scarcely anything to be gained by that. In the essentials,
the problem in connexion with Central Battery instruments is the same
as above, although the presuppositions should, perhaps, be chosen some-
what differently; besides, the transformer is not quite so important here
as in the case of the L. B. instrument.



11. NEW ALTERNATING-CURRENT COMPENSATION
APPARATUS FOR TELEPHONIC MEASUREMENTS

First published in “Elektroteknikeren”, vol. 9, 1913, p. 157.

Description of the Apparatus.

The essential parts of the apparatus are (see Fig. 1): Two calibrated
slide-wires M, and M, (each having a resistance of about 50 ohms) with
a millimetre graduation in both directions from a central zero; two
standards of self-induction P, each of 0.01 henry and 3'ohms; two non-

<
) § § 59! :%é
¥ : o A B
R s — M
i T A
I .
] M |

Fig. 1.

inductive coils, Q, of exactly the same resistance as the standards; a
transformer, containing no iron, and consisting of a primary coil B and
a secondary coil A, the mutual inductance being variable within certain
limits by moving one of the coils. Two sliding contacts, each movable
along one of the wires M; and M,, are during the measurements generally
connected - with different points on the object to be measured (which
is not shown in the illustration); these connexions (and others which
are found desirable later) are facilitated by a junction-board having a
number of terminals. A telephone receiver T, the cords of which are led
to this junction-board, forms part of one of the above connexions.
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The Pressure Diagram.

When a simple periodic alternating current flows through the two
parallel circuits consisting of the coils P with the wire M, and the coils
Q with the wire M,, the pressure along the wires can be represented by
means of a veector diagram, as in Fig. 2. The numbers shown on this
diagram correspond directly with the marking of the two scales of the
apparatus. .

Knowing the frequency o of the current, and the constants of the
wires and coils, the angle o between the two lines can easily be deter-
mined. Taking, for instance, the values given previously, we have —

o = 2,800 tan a.

To check the accuracy of the wires, &c., the two junction-terminals used
for connecting up to the object to be measured can be short-circuited;
in that case, on placing the sliding contacts at zero, the telephone should
be silent. ‘

The Generator and the Frequency.

Any alternating-current generator capable of producing currents of
the desired frequency or frequencies (for instance « = 5,000) may be
used, provided it gives a wave sufficiently free from harmonies. Its out-
put need not be large or very constant, but it is important that the fre-
quency should remain practically constant during each measurement.

For determining the frequency, two methods have been found very
convenient. First, use can be made of a tuning-fork of the desired fre-
quency of vibration by comparing the pitches and observing the beats.
The second method is purely electrical. By connecting the terminals of
the secondary coil A to the junction-board, it is possible by moving the
sliding contacts to balance the secondary pressure against the potential
difference between two points of the wires. Having obtained silence in
the telephone, the two readings a and b are noted. It is, by the way,
advisable here to reverse the connexions and to take a second set of
readings, which ought to be equal to the first with the signs reversed. A
similar check may be applied to all the following measurements. Now it
can be shown!) that

fan o — V2 (bja — 1),

and by using the formula for « given above, w can easily be found. Tt
must be realized that the ratio b/a will be independent of the distance
between the coils A and B; on the other hand, if the same distance is

1) The proof of this must here be omitted.
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always chosen the reading “a’’ will be the same for every value of w,
and the frequency can accordingly be measured rather more easily.

Impedance Measurements.

The unknown impedance is connected, together with a known resistance,
say, 1,000 ohms, in series with the secondary coil. Now, by compensation,
the pressures across the known resistance and across the unknown imped-
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Fig. 2.

ance are ascertained, the corresponding vectors being at once deter-
mined from the pressure diagram (Fig. 2). From the lengths of the vectors
and the angle between them, the vector representing the unknown imped-
ance (the ohm being taken as the unit) can easily be found.

Transmission Measurements on Telephone Conductors.

For ‘the sake of simplicity only homogeneous conductors will be con-
sidered. One method is to measure the impedance (A and K) of the con-
ductor with the far end first open and then closed. The constant, z, known
as. the “characteristic impedance” or “initial sending-end impedance”,
can then be found as the geometrical mean of A and K.

The propagation’ constants, generally denoted by B and «, are most
easily found by constructing a triangle, the two sides of which, A and
K, enclose the correct angle between them. The third side will be C (Fig.
3). Now, denoting by ! the length of the conductor, we have —
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(5()Sh .1; Bl - 3
COSs 2 al e .
C

In these equations, A, K, and C denote the absolute values of the
vector quantities. Of course, in order to determine a [/ it is necessary to
have a preliminary approximate knowledge of its value.

. -Fig. 3. Fig. 4.

Another method of finding B and « consists in measuring the potential
differences, P and S, at the near end and at the far end — it must here
be assumed that the far end of the conductor can be brought within reach.
For obtaining the values of B and « the construction shown in Fig. 4
may be used; we then have —

M-+ N

cosh Bl = 58

M—N

S cosal = s
28

M, N, and S being the absolute values of the vector quantities.

Generally speaking, from the point of view of accuracy the latter
method is preferable if the conductor to be measured is long, the former
if it is short.

Instead of the potential difference, S, it is sometimes better to measure
the fall of pressure from the near end to the far end.

In the case of a non-homogeneous conductor, the methods are not
quite so simple as in the case just considered. A complete measurement
consists of 3 impedance measurements, one of which can be omitted by
measuring the pressure at the far end.

The case of a transformer is analogous.
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Special M ethods.

While the above-mentioned methods are sufficient for the telephone
measurements most commonly required in the laboratory or in practice,
a somewhat different arrangement of the main parts of the apparatus
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Fig. 5

will occasionally be more convenient. Thus for impedance measurements
the arrangements indicated in Figs. 5 and 6 can be used under certain
circumstances, the former for not too great, the latter for not too small
impedances. It is here unnecessary to have a known comparison resistance
in series with the impedance X to be determined, provided that once for
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Fig. 6.

all such a resistance is inserted in place of X and the corresponding
readings are taken.

The arrangement shown in Flg 7 is very convenient for determinations
of the propagation constants g and a!) (the near-end pressure may be
measured once for all, it being the same in all cases).

1} B denotes the attenuation constant and a the phase constant.
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Fig. 7.

The arraﬁgement indicated in Fig. 8 is suitable for microphone tests,
and some difficulty will naturally be experienced owing to the somewhat
irregular behaviour of the microphone.

[}

0
(OO0 LUy

Concluston.

A description has here been given of a simple, cheap, and transport-
able apparatus for telephonic and other alternating-current measure-
ments, which has already done good service for some years in the research
laboratory of the Copenhagen Telephone Company, and Wh_lch may prove
of interest to others handling similar problems.
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In conclusion, it is a pleasant duty to express my grateful acknow-
ledgments of several very valuable researches already made on similar
lines, especially the work of Professor Absalon Larsen of Copenhagen?).
My special thanks are also due to Mr. J. L. W. V. Jensen, Chief Engi-
neer of the Copenhagen Telephone Company, under whose supervision
the present work has been carried out.

1) I refer to the following two papers by Professor Larsen in the Hlektrotechnische
Zeitschrift: “Bin akustischer Wechselstromerzeuger mit regulierbarer Periodenzahl fir
schwache Stréme’ (vol. 32, p. 284, 1911), and “Der komplexe Kompensator, ein Ap-
parat zur Messung von Wechselstrémen durch Kompensation” (vol. 31, p. 1039, 1910).



TABLE OF ERLANG’S LOSS FORMULA

Computed by E. BROCKMEYER

Formula: B =

1+y‘+%+-~-+%

where B is the loss, n the number of circuits and y.the traffic-intensity
in erlang.

The table gives for n = 1 — 260 the values of y corresponding to
various fixed values of B.

n | B=0.001{B=0.002|B=0.003|B=0.004|B=0.005|B=0.010{B=0.020|B=0.050

1 0.001 0.002 0.003 0.004 0.005 0.01 0.02 0.05
2 0.05 0.07 0.08 0.09 0.11 0.15 0.22 0.38
3 0.19 0.25 0.29 0.32 0.35 0.46 0.60 0.90
4 0.44 0.53 0.60 0.66 0.70 0.87 1.09 1.52
5 0.76 0.90 0.99 1.07 1.13 1.36 1.66 2.22
6 1.156 1.33 1.45 1.54 1.62 1.91 2.28 2.96
7 1.58 1.80 1.95 2.06 2.16 2.50 2.94 3.74
8 2.05 2.31 2.48 2.62 2.73 3.13 3.63 4.54
9 2.56 2.85 3.056 3.21 3.33 3.78 4.34 5.37

10 3.09 3.43 3.65 3.82- 3.96 4.46 5.08 6.22

11 3.65 4.02 4.26 .| 4.45 4.61 5.16 5.84 7.08
12 4.23 4.64 4.90 5.11 5.28 5.88 6.62 7.95
13 4.83 5.27 5.56 5.78 5.96 6.61 7.41 8.83
14 5.45 5.92 6.23 6.47 6.66 7.35 8.20 9.73
15 6.08 6.58 6.91 7.17 7.38 8.11 9.01 10.63
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7 [B=0.001{B=0.002/B=0.003, B =0.004|B= 0.005!{B=0.010| B=0.020|B=0.050
16 6.72 7.26 7.61 7.88 8.10 8.87 9.83 11.54
17 7.38 7.95 8.32 8.60 8.83 9.65 10.66 12.46
18 8.05 8.64 9.03 9.33 9.58 10.44 11.49 13.38
19 8.72 9.35 9.76 10.07 10.33 11.23 | 12.33 14.31
20 9.41 10.07 10.50 10.82 11.09 12.03 13.18 15.25
21 10.11 10.79 11.24 11.58 11.86 12.84 14.04 16.19
22 10.81 11.53 11.99 12.34 12.63 13.65 14.90 17.13
23 11.52 12.27 12.75 13.11 13.42 | 14.47 15.76 18.08
24 12.24 13.01 13.51 13.89 14.20 15:29 16.63 19.03
25 12.97 13.76 14.28 14.67 15.00 16.12 17.50 19.99
26 13.70 14.52 15.05 15.46 15.80 16.96 18.38 20.94
27 14.44 15.28 15.83 16.25 16.60 17.80 | , 19.26 21.90
28 15.18 16.05 16.62 17.05 17.41 18.64 20.15 22.87
29 15.93 16.83 17.41 17.85 18.22 19.49 21.04 23.83
30 16.68 17.61 18.20 18.66 19.03 20.34 21.93 24.80
31 17.44 18.39 19.00 19.47 19.85 21.19 22.83 25.77
32 18.20 19.18 19.80 20.28 20.68 22.06 | 23.73 26.75
33 18.97 19.97 | .20.61 21.10 21.51 22.91 24.63 27.72
34 19.74 20.76 21.42 21.92 22.34 23.77 25.563 28.70
356 20.52 21.56 22.23 22.75 23.17 24.64 26.43 29.68
36 21.30 .| 22.36 23.06 23.58 24.01 25.51 27.34 30.66
37 22.08 . 23.17 23.87 24.41 24.85 26.38 28.25 31.64
38 22.86 | 23.97 24.69 25.24 25.69 27.25 29.17 32.63
39 | 23.65 24.78 25.52 26.08 26.563 28.13 30.08 33.61
40 24.44 25.60 26.35 26.92 27.38 29.01 31.00 34.60
41 | 25.24 26.42 27.18 27.76 28.23 29.89 31.92 35.59
42 26.04 27.24 28.01 28.60 29.08 30.77 .| 32.84 36.58
43. 26.84 28.06 28.85 29.45 29.94 31.66 33.76 37.57
44 27.64 | 28.88 29.68 30.30 30.80 32.54 34.68 38.56
45 28.45 29.71 30.562 31.15. 31.66 33.43 35.61 39.55
46 .| 29.26 30.54 31.37 32.00 '32.52 34.32 36.52 40.54
47 30.07 31.37 32.21 32.85 33.38 35.21 37.46 41.54
48 30.88 32.20 33.06 33.71 34.25 36.11 38.39 42.54
49 31.69 33.04 332.91 34.57 35.11 37.00 39.32 43.54
50 32.561 33.88 34.76 35.43 35.98 37.90 /| 40.25 44.53
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E. Brockmeyer:

B = 0.004

n B = 0.001|{B = 0.002| B = 0.003 B = 0.005| B = 0.010
51 33.33 34.72 35.61 36.29 36.85 38.80
52 34.15 35.56 36.47 37.16 37.72 39.70
53 34.98 36.40 37.32 38.02 38.60 40.60
54 35.80 37.26 38.18 38.89 39.47 41.50
55 36.63 38.09 39.04 39.76 40.35 42.41
56 37.46 38.94 39.90 40.63 41.23 43.31
57 38.29 39.79 40.76 41.50 42.11 44.22
58 39.12 40.64 41.63 42.38 42.99 45.13
59 39.96 41.50 42.49 43.25 43.87 46.04
60 40.79 42.35 43.36 44.13 44.76 46.95
61 41.63 43.21 44.23 45.00 45.64 47.86
62 42.47 44.07 45.10 45.88 ,46.53 48.77
63 43.31 44.93 45.97 46.76 47.42 49.69
64 44.16 45.79 46.84 47.64 48.31 50.60
65 45.00 46.65 47.72 48.53 49.20 51.52
66 45.84 47.51 48.59 49.41 50.09 52.44
67 46.69 48.38 49.47 50.30 50.98 53.35
68 47.54 49.24 50.34 51.18 51.87 54.27
69 48.39 50.11 51.22 52.07 52.77 55.19
70 49.24 .50.98 52.10 52.96 53.66 56.11
71 50.09 51.85 52.98 53.85 54.56 57.03
72 50.94 52.72 53.87 54.74 55.45 57.96
73 51.80 53.59 54.75 55.63 56.35 58.88
74 52.65 54.46 55.63 56.52 57.25 59.80
75 53.561 55.34 56.52 57.42 58.15 60.73
76 54.37 56.21 57.40 58.31 59.05 61.65
77 55.23 57.09 58.29 59.21 59.96 62.58
78 56.09 57.96 59.18 60.10 60.86 63.51
79 56.95 58.84 160.07 61.00 61.76 64.43
80 57.81 59.72 60.96 61.90 62.67 65.36
81 58.67 60.60 61.85 62.80 63.57 66.29
82 59.54 61.48 62.74 63.69 64.48 67.22
83 60.40 62.36 63.63 64.59 65.38 68.15
84 61.27 63.24 64.52 65.50 66.29 69.08
85 62.14 64.13 65.41 66.40 67.20 70.02
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n B =0.001 B=10.002|B = 0.003! B = 0.004| B = 0.005; B = 0.010
86 63.00 65.01 66.31 67.30 68.11 70.95
87 63.87 65.90 67.20 68.20 69.02 71.88
88 64.74 66.78 68.10 69.11 169.93 72.81
89 65.61 67.67 69.00 70.01 70.84 73.75
90 66.48 68.56 69.90 70.92 71.76 74.68
91 67.36 69.44 70.79 71.82 72.67 75.62
92 68.23 70.33 71.69 72.73 73.58 76.56
93 69.10 71.22 72.59 73.64 74.49 77.49
94 69.98 72.11 73.49 74.55 75.41 78.43
95 70.85 73.00 74.40 75.45 76.32 79.37
96 71.73 73.90 75.30 76.36 77.24 80.31
97 72.61 74.79 76.20 77.27 78.16 81.24
98 73.48 75.68 77.10 78.18 79.07 82.18
99 74.36 76.57 78.01 79.10 79.99 83.12
100 75.24 77.47 78.91 80.01 80.91 84.06
101 76.12 78.36 79.82 80.92 81.83 85.00
102 77.00 79.26 80.72 81.83 82.75 85.95
103 77.88 80.16 81.63 82.75 83.67 86.89
104 78.77 81.05 82.53 83.66 84.59 87.83
105 79.65 81.95 83.44 84.58 85.51 88.77
106 80.53 '82.85 84.35 85.49 86.43 89.72
107 81.42 83.75 85.26 86.41 87.35 90.66
108 82.30 84.65 86.17 87.32 88.27 91.60
109 83.19 85.55 87.08 88.24 89.20 92.55
110 84.07 86.45 87.99 89.16 90.12 93.49
111 84.96 87.35 88.90 90.08 91.04 94.44
112 85.85 88.25 89.81 90.99 91.97 95.38
113 86.73 89.15 90.72 91.91 92.89 96.33
114 87.62 90.06 91.63 92.83 93.82 97.28
115 88.51 90.96 92.54 93.75 94.74 98.22
116 89.40 91.86 93.46 94.67 95.67 99.17
117 90.29 92.77 94.37 95.59 96.60 100.12
118 91.18 93.67 95.28 96.51 97.53 101.07
119 92.07 94.58 96.20 97.44 98.45 10202
120 92.96 95.48 97.11 98.36 99.38 102.96
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E. Brockmeyer:

n  |B=0.001|B=0.002 | B=0.003|B=0004B = 0.005|B = 0.010
121 93.86 96.39 98.03 99.28 | 10031 | 103.91
122 94.75 97.30 98.95 | 100.20 | 101.24 | 104.86
123 95.64 98.20 99.86 | 101.13 | 10217 | 105.81
124 96.54 99.11 | 100.78 | 102.05 | 103.10 | 106.76
125 97.43 | 100.02 | 101.70 | 102.98 | 104.03 | 107.71
126 98.33 | 100.93 | 102.61 | 103.90 | 10496 | 108.66
127 99.22 . | 101.84 | 103.53 | 104.83 | 105.89 | 109.62
128 100.12 | 10275 | 10446 | 10575 | 106.82 | 110.57
129 101.01 | 103.66 | 10537 | 106.68 | 107.75 | 111.52
130 101.91 | 10457 | 106.29 | 107.60 | 108.68 | 112.47
131 102.81 | 10548 | 107.21 | 108.53 | 109.62 | 113.42
132 103.70 | 106.39 | 108.13 | 109.46 | 11055 | 114.38
133 104.60 | 107.30 | 109.05 | 11038 | ‘11148 | 115.33
134 105.50 | 108.22 | 109.97 | 111.31 | 11242 | 116.28
135 106.40 | 10913 | 110.89 | 11224 | 11335 | 117.24
136 107.30 | 110.04 | 111.82 | 113.17 | 114.28 | 118.19
137 108.20 | 11095 | 11274 | 11410 | 11522 | 119.14

138 109.10 | 111.87 | 113.66 | 11503 | 116.15 | 120.10
139 110.00 112.78 114.58 115.96 117.09 121.05
140 110.90 113.70. 115.51 116.89 118.02 122.01
141 111.81 | 114.61 | 11643 | 117.82 | 118.96 | 122.96
142 112.71 115.53 117.36 118.75 119.90 123.92
143 113.61 | 11644 | 11828 | 119.68 | 120.83 | 124.88
144 11451 | 117.36 | 119.20 | 12061 | 121.77 | 125.83
145 11542 | 118.28 | 12013 | 12154 | 12271 | 126.79
146 116.32 119.19 121.05 122.47 123.64 127.74
147 117.22 120.11 121.98 123.41 124.58 128.70
148 118.13 | 121.03 | 122.91 | 124.3¢ | 12552 | 129.66
149 119.03 | 121.95 | 123.83 | 12527 | 12646 | 130.62
150 119.94 | 122.86 | 124.76 | 12621 | 12740 | 131.58
151 120.85 | 12378 | 125.69 | 12714 | 128.33 | 132.53
152 12175 | 12470 | 126.61 | 128.07 | 129.27 | 133.49
153 122.66 | 125.62 | 127.54 | 120.01 | 13021 | '134.45
154 123.56 126.54 128.47 129.94 131.15 135.41
155 12447 | 12746 | 12040 | 130.88 | 132.09 | 136.37
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n B == 0.001| B = 0.002| B = 0.003| B = 0.004 | B =0.005 | B = 0.010
156 125.38 128.38 130.33 131.81 133.03 137.33
157 126.29 129.30 131.25 132.75 133.97 138.29
158 127.20 130.22 132.18 133.68 134.91 139.25
159 128.10 131.14 133.11 134.62 135.86 140.21
160 129.01 132.07 134.04 135.55 136.89 141.17
161 129.92 132.99 134.97 136.49 137.74 142.13
162 130.83 133.91 135.90 137.43 138.68 143.09
163 131.74 134.83 136.83 138.36 139.62 144.05
164 132.65 135.75 137.76 139.30 140.56 145.01
165 133.56 136.68 138.70 140.24 141.51 145.97
166 134.47 137.60 139.63 141.18 142.45 146.93
167 135.39 138.52 140.56 142.11 143,39 147.89
168 136.30 139.45 141.49 143.05 144.34 148.86
169 137.21 140.37 142,42 |  143.99 145.28 149.82
170 138.12 141.30 143.36 144.93 146.22 150.78
171 139.03 142.22 144.29 145.87 147.17 151.74
172 139.95 143.15 145,22 146.81 148.11 152.71
173 140.86 144.07 146.16 147.75 149.06 153.67
174 141.77 145.00 147.09 148.69 150.00 154.63
175 142.69 145.92 148.02 149.63 150.95 155.60
176 143.60 146.85 148.96 150.57 151.89 156.56
177 144.52 147.78 149.89 151.51 152.84 157.52
178 145.43 148.70 150.83 152.45 153.78 158.49
179 146.35 149.63 151.76 153.39 154.73 159.456
180 147.26 150.56 152.70 154.33 155.68 160.42
181 148.18 151.49 153.63 155.27 156.62 161.38
182 149.09 152.41 154.57 156.21 157.57 162.35
183 150.01 153.34 155.50 157.16 158.52 163.31
184 150.93 154.27 156.44 158.10 159.46 164.28
185 151.84 155.20 157.37 159.04 160.41 165.24
186 152.76 156.13 158.31 159.98 161.36 166.21
187 153.68 157.06 159.25 160.93 162.31 167.17
188 154.59 157.99 160.19 161.87 163.25 168.14
189 155.51 158.91 161.12 162.81 164.20 169.10
190 156.43 159.84 162.06 163.76 165.15 170.07

18



E. Brockmeyer:

n B = 0.001| B = 0.002 | B = 0.003 | B = 0.004| B = 0.005 | B = 0.010
191 157.35 160.77 163.00 | 16470 | 166.10 | 171.03
192 158.27 161.70 | 163.94 165.64 | 167.05 | - 172.00
193 159.19 162.64 | 164,87 166.59 168.00 172.97
194 160.10 163.57 165.81 167.53 | 168.95 | 173.93
195 161.02 164.50 | 166.75 168.47 169.90 | 174.90
196 161.94 | 165.43 167.69 169.42 170.84 175.87
197 162.86 166.36 | 168.63 170.36 171.79 176.84
198 163.78 167.29 | 169.57 171.31 172.74 177.80
199 164.70 168.22 | 170.51 172.25 | 173.69 178.77
200 165.62 169.16 | 171.45 173.20 | 174.64 179.74
201 166.54 | 170.09 172.39 174.15 | 175.60 180.71
202 167.47 171.02 173.33 175.09 | ,176.55 181.67
203 168.39 171.95 | 174.27 176.04 | 177.50 | 182.64
204 '169.31 172.88 | 175.21 176.98 | 178.45 | 183.61
205 170.23 173.82 | 176.15 177.93 179.40 | 184.58
206 171.15 17475 | 177.09 | 178.88 180.35 | 185.55
207 172.07 175.68 178.03 179.82 181.30. | 186.52
208 173.00 176.62 178.97 180.77 182.25 | 187.48
209 173.92 177.55 179.91 181.72 183.21 188.45
210 174.84 | 178.49 | 180.85 | 182.66 | 184.16 189.42
211 175.77 179.42 181.79 183.61 185.11 190.39
212 176.69 180.36 182.74 | 184.56 | 186.06 | 191.36
213 177.61 181.29 183.68 185.51 187.01 192.33
214 178.54 | 182.23 184.62 186.45 | 187.97 193.30
215 179.46 | 183.16 185.56 187.40 188.92 194.27
216 180.38 184.10 | 186.51 188.35 | 189.87 195.24
217 181.31 185.03 187.45 | 189.30 | 190.83 | 196.21
218 182.23 | 185.97 188.39 190.25 | 191.78 197.18
219 183.16 186.90 189.33 | 191.20 192.73 198.15
220 184.08 187.84 | 190.28 | 19215 | 193.69 199.12
221 185.01 188.78 191.22 193.09 194.64 | 200.09
222 185.93 189.71 192.16 | 194.04 | 19559 | 201.06
223 186.86 190.65 | 193.11 194.99 | 196.55 | 202.04
224 187.78 191.58 194.05 | 195.94 | 197.50 | 203.01
225 188.71 192.52 195.00 | 196.89 198.46 | 203.98
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n B = 0.001} B = 0.002 | B = 0.003| B = 0.004 | B = 0.005!| B = 0.010
226 189.64 193.46 195.94 197.84 199.41 204..95
227 190.56 194.40 196.89 198.79 200.37 205.92
228 191.49 195.33 197.83 199.74 201.32 206.89
229 192.42 196.27 108.78 200.69 202.28 207.86
230 193.34 197.21 199.72 201.64 203.23 208.84
231 194.27 198.15 200.67 202.60 204.19 209.81
. 232 195.20 199.09 201.61 203.55 205.14 210.78
233 196.13 200.02 202.56 204.50 206.10 211.75
234 197.05 200.96 203.50 205.45 207.05 212.72
235 197.98 201.90 204.45 206.40 208.01 213.70
236 198.91 202.84 205.39 207.35 208.97 214.67
237 199.84 203.78 206.34 208.30 209.92 215.64
238 200.77 204.72 207.29 209.26 210.88 216.62
239 201.70 205.66 208.23 210.21 211.83 217.59
240 202.62 206.60 209.18 211.16 212.79 218.56
241 203.55 207.54 210.13 212.11 213.75 219.53
242 204.48 208.48 211.07 213.06 214.70 220.51
243 205.41 209.42 212.02 214.02 215.66 221.48
244 206.34 210.36 212.97 214.97 216.62 222.45
245 207.27 211.30 213.92 215.92 217.58 223.43
246 208.20 212.24 214.86 216.87 218.53 224.40
247 209.13 213.18 215.81 217.83 219.49 225.37
248 210.06 214.12 216.76 218.78 220.45 226.35
249 210.99 215.06 217.71 219.73 221.41 227.32
250 211.92 216.00 218.65 220.69 222.36 228.30
251 212.85 216.94 219.60 221.64 223.32 229.27
252 213.78 217.88 220.55 222.59 224.28 230.25
253 214.72 218.83 221.50 223.55 225.24 231.22
T 254 215.65 219.77 222.45 224.50 226.20 232.19
255 216.58 220.71 223.40 225.46 227.16 233.17
256 217.51 221.65 224.34 226.41 228.11 234.14
257 218.44 222.59 225.29 227.37 229.07 235.12
258 219.37 223.54 226.24 228.32 230.03 236.09
259 220.31 224.48 227.19 229.27 230.99 237.07
260 221.24 225.42 228.14 230.23 231.95 238.04
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